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Abstract: Transport of spin-polarized electrons in a single-electron transistor is analyzed theoretically in
the sequential tunneling regime. The central electrode (island) and the two external leads of the device
are ferromagnetic. The analysis is based on the master equation method, with the respective transition
rates  determined from the Fermi golden rule.  It  is  shown that electric current  depends  on  magnetic
configuration of the system, and the resulting tunnel magnetoresistance is modulated periodically with
increasing bias voltage. Numerical results are in qualitative agreement with recent experimental obser-
vations by F. Ernult et al. (Appl. Phys. Lett. 84, 3106 (2004)).

1. INTRODUCTION

Electronic transport  through single-electron mesoscopic devices was extensively studied
during the last decade, but mainly for nonmagnetic metallic islands or quantum dots (based on
two-dimensional electron gas) coupled to nonmagnetic reservoirs [1]. Transport properties of
metallic islands or quantum dots coupled to ferromagnetic leads were investigated only very
recently [2-5] – mainly theoretically, although some experimental results are already available,
too. In the latter case certain new effects arise from the interplay of charge discreteness, energy
levels quantization, and magnetism [6-10].

In this paper,  we present  results of our theoretical  analysis of spin polarized electronic
transport  in a single-electron transistor,  whose two external electrodes and the central part
(island) are ferromagnetic. Transport characteristics of such a device depend on its magnetic
configuration, and this dependence stems from asymmetry between the spin-majority and spin-
minority electron bands in the corresponding ferromagnetic metals. The main objective of the
paper is to explain recent experimental data by Ernult  et al. [11], who observed periodically
modulated tunnel magnetoresistance with increasing bias voltage V.

In  order  to  analyze transport  characteristics  of  the device,  we have employed  the  per-
turbation theory and limited considerations to the first order (sequential) tunneling processes.
The  corresponding  tunneling probabilities  have  been  derived  from the  Fermi  golden  rule,
whereas the relevant probabilities of different charge states have been determined from the ap-
propriate master equations. We have analyzed numerically electric current flowing through the
system  in  both  parallel  and  antiparallel  configurations,  as  well  as  the  resulting  tunnel
magnetoresistance. The magnetoresistance is shown to vary periodically with increasing bias
voltage, in agreement with Ref. [11].
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In  the  following  two  sections  we  describe  the  system and  outline  the  corresponding
theoretical description. Apart from this, we present and discuss some of the relevant numerical
results.

2. MODEL AND THEORETICAL DESCRIPTION

The system under consideration consists  of  three  ferromagnetic  electrodes.  The  central
electrode, referred to as an island in the following, is assumed to be extremely small, which
results  in  its  very low capacitance.  Consequently,  the  energy needed  to  put  an additional
electron on the island becomes large enough to establish a new relevant energy scale  so-called
charging energy. This,  in turn,  leads to  some charging effects,  which may be observed in
current-voltage transport characteristics. Moreover, by applying capacitively a gate voltage to
the island,  it  is  possible  to  control  functionality of  the system. The schematic of  a  ferro-
magnetic single-electron transistor is displayed in Fig. 1, where two possible magnetic configu-
rations are also indicated. 

Fig. 1. A schematic of the ferromagnetic single-electron transistor. The system can be in two magnetic
configurations, as indicated. The barrier resistances R1 and R2 are spin dependent 

The central electrode (island) is coupled to external leads by tunnel barriers. Thus, the cur-
rent can flow through the system due to consecutive tunneling processes. Generally, one can
distinguish between the first-order and second-order tunnel events. The first-order (sequential)
tunneling takes place when the applied bias voltage exceeds a certain threshold voltage. If this
is  the case,  the electrons tunnel one by one through the system. However,  if  the transport
voltage  is  lower  than  the  threshold  voltage,  the  sequential  tunneling is  exponentially sup-
pressed and the system is in the Coulomb blockade regime. Although the first-order processes
are then suppressed, the current can still be mediated by the higher-order tunneling events,
such as cotunneling. Cotunneling is a correlated in time tunneling process of two electrons,
that takes place  via some virtual intermediate states of the system. These processes do not
change charge state of the island, and therefore are not blocked by the charging energy.
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In our considerations, however, we take into account only sequential processes.  This is
justified  if  the  resistances  of  both  barriers  are  much  larger  than  the  quantum resistance,
Ri >> RQ  = h/e2 (i = 1, 2), and out of the Coulomb blockade regime. Further, we consider only
spin-conserving tunneling processes. Additionally, the island is assumed to be relatively large,
which  implies  that  the  quantization  effects  of  the  corresponding  energy  levels  can  be
neglected.  Finally, we assume fast spin relaxation on the island, so the effects due to spin
accumulation are absent.

In order to calculate electric current flowing through the system, one has to calculate the
rates of the corresponding tunneling processes. The first-order tunneling rates can be determi-
ned with the aid of the Fermi golden rule. The rate for tunneling of spin polarized electrons
onto (out of) the island through the i-th barrier associated with a change of the island charge
state from n to n + 1 (n to n  1) is given by 
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with T denoting the temperature, Ri  being the spin-dependent resistance of the i-th barrier, and
( 1, )i n n VΕ∆ → ± describing a change of the system energy caused by the respective tunneling
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where CΣ = C1 + C2 + Cg is the total capacitance of the island, C1 and C2 are the capacitances of
the two junctions, and  Cg is the gate capacitance. In Eq. (2)  Ui (n) denotes the voltage drop
between the i-th electrode and the island, 
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 where
Vi is the electrostatic potential of the  i-th electrode and  j ≠ i (j =  1, 2),  whereas  e is the
absolute value of the electron charge (e > 0).

Having found the tunneling rates, one can set up the corresponding steady-state master
equation, which allows us to determine the probability P(n, V ) of having n additional electrons
on the island when a bias voltage  V is applied.  This probability can be obtained using the
recursion relation [12]: 
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where  1,2( , ) ( 1, )i ix n V n n Vσ σΓ== Σ → +  and  1, 2( , ) ( 1, )i iy n V n n Vσ σΓ== Σ → −  correspon-
ding to the rates for tunneling into and out of the island, respectively. Finally, the electric
current flowing through the system can be calculated as 
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Equation (4) basically describes current flowing through the left barrier, but this is equiva-
lent to the total current since the same current flows through the second barrier.
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3. NUMERICAL RESULTS AND DISCUSSION

Now, we will present results of our numerical calculations of the corresponding transport
characteristics.  Tunnel  magnetoresistance  is  characterized  by  the  relative  change  of  the
resistance when magnetic configuration varies from antiparallel to parallel, and is described
quantitatively by the factor TMR = (Rap  Rp)/Rp  100%, with Rp(Rap) being the total resistance
of the system in the parallel (antiparallel) configuration [13, 14]. The relevant parameters are
taken in such a way that the resulting tunnel magnetoresistance fits well to the experimental
data  obtained in  Ref.  [11].  In  particular,  the  distance  between the  two maxima in  tunnel
magnetoresistance and the absolute hight of tunnel magnetoresistance at the first maximum are
fitted to the experimental observations.

Fig. 2. Currents (a) flowing through the system in the
parallel  (Ip)  and  antiparallel  (Iap)  configurations  and
the resulting tunnel magnetoresistance (b) as a func-
tion of the bias voltage V. The parameters assumed for
numerical calculations are: T = 4.2 K, C1 = 0.1 aF, C2

=1 aF, Cg = 4.8 aF, V1 = V/2, V2= V/2, and Vg = 0. The
resistances  in  the  parallel  configuration  are

1 0,415 MpR ↑ = Ω,  1 0,075 MpR ↓ = Ω,  2 5 MpR ↑ = Ω,
2 2,5 MpR ↓ = Ω,  whereas in the antiparallel configura-

tion ap ap p p
i i i iR R R R↑ ↓ ↑ ↓= = for  i = 1, 2. These parame-

ters correspond to the experimental data by Ernult  et
al. [11]

The  corresponding  current  voltage  curves  are  shown in  Fig.  2a  for  both  parallel  and
antiparallel configurations, whereas the resulting tunnel magnetoresistance is shown in Fig. 2b.
The Coulomb steps are well resolved for the parameters assumed for numerical calculations.
Moreover,  the Coulomb staircase in the parallel  configuration is  different from that  in the
antiparallel one, and this difference follows from the spin asymmetry and leads to the tunnel
magnetoresistance displayed in Fig. 2b. The two local maxima seen in Fig. 2b occur at the
Coulomb  steps  in  Fig.  2a.  The  first  maximum  (at  the  threshold  voltage)  is  however
significantly larger than the second one.

In  conclusion,  we  have  calculated  current  voltage  characteristics  and  tunnel  magneto-
resistance  in  a  ferromagnetic  single-electron  transistor  and  fitted  tunnel  magnetoresistance
curves to those observed experimentally by Ernult et al. [11]. The agreement between theory
based on sequential tunneling is quite satisfactory, except the Coulomb blockade regime (small
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voltages  regime),  where  tunnel  magnetoresistance  is  different  from  that  observed
experimentally. The difference is a consequence of the the fact that the dominant contribution
to electric current in the Coulomb blockade regime is due to cotunneling processes, which
usually lead to a magnetoresistance ratio which is different from that obtained for sequential
tunneling.
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