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COHERENT  TRANSPORT  THROUGH  DOUBLE  DOT  SYSTEM
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Abstract: The coherent spin dependent transport through a set of two capacitively coupled quantum dots
(DQD) is considered in the limit of infinite intra and interdot coulomb interactions. The Kondo effect in
DQD has two possible sources: the spin and the “orbital” degeneracies. For the vanishing magnetic field
and equal site energies of the dots, currents flowing through each of the four channels are equal and
the linear conduction reaches the unitary limit at zero temperature. To calculate the densities of states we
use the expression for the Green’s function derived by Meier et al. [1] for the single dot by the equation
of motion method (EOM) and generalized by us to the DQD system in approximation which favors
separate fluctuations of spin, orbital isospin and the simultaneous fluctuations of both of them. Apart
from the Kondo peak, also the satellite many-body peaks located above and below the Fermi level are
found in the densities of states. The positions of the peaks are determined by the strength of the magnetic
field.  Whereas  the  states  of  both  spin  orientations  contribute  almost  equally  to  the  central  Kondo
resonance, the satellite peaks are characterized by different spin orientations. 

1. INTRODUCTION

Spin dependent tunneling through nanostructures has became a very active area of research
due to its  possible  applications in  field  sensors [2],  conventional  computer  hardware (e.g.
magnetic random access memories (MRAMs) [2])  and in quantum computers [3].  In com-
monly  used  magnetoresistive  devices  the  ferromagnetic  electrodes  are  used.  To  control
the transport its dependence on the relative orientation of magnetic moments of the leads is
exploited. The problem of attaching ferromagnetic electrodes to a QD is far from trivial and
therefore it  is  of importance to examine the field control  of current also for the structures
coupled to nonmagnetic leads. For the resonant tunneling a separation of the spin channels is
possible, but extremely high magnetic fields are required (the Zeeman splitting should be of
the order of the coupling to the leads). For typical values of 0.1-0.5 meV [4] the corresponding
fields lie in the range 2-10 T. For special cases of systems characterized by an enhanced  g
factor the necessary fields are slightly smaller. Magnetic field also influences transport in the
coherent regime. The natural scale of the field in this case is determined by a typical width of
the many-body resonance. This is much smaller than the coupling strength Γ. For the single dot
the field induced splitting of the Kondo resonance is now experimentally well documented [5].
For the deep dot level the Kondo peaks corresponding to the opposite spin directions move
with the field almost symmetrically with respect to the Fermi level and consequently the linear
conductance does not exhibit significant spin polarization. This is a consequence of the fact
that  h =  0  Kondo  resonance lies  just  above  the  Fermi  level.  The relative  increase  of  the
difference  between  the  spin-resolved  conductances  is  expected  with  the  increase  of
temperature  or  by  a  shift  of  the  dots  energy  towards  the  mixed  valence  regime.  The
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unperturbed resonance moves then on the right from the Fermi level introducing, for the finite
field,  spin asymmetry. The spin-filtering effect for the single dot in the coherent regime is
described in [6]. Recently Kondo effect has been also observed in double dot structures [7].
The large number of tunable parameters (e.g.  gate voltages, tunneling strengths) allows the
delicate manipulation of the Kondo physics.
 The aim of the present paper is to discuss the influence of magnetic field on the structure of
the many-body resonances of DQD and to examine the field dependence of the conductance.
The occurrence of the satellite peaks in DOS reflects in the apperance of the  corresponding
peaks in the nonlinear conductance. Their position is determined by the field. This property
can be  used  in  measuring the  field.  The side  peaks above and below the Fermi level  are
characterized by the opposite spin polarization and we predict that this should be observed in
the strong spin dependence of boson assisted tunneling.

2. CAPACITIVELY COUPLED DOUBLE QUANTUM DOT 
IN THE KONDO REGIME

We discuss the system of two capacitively coupled quantum dots placed in a magnetic
field. Each of the dots is coupled to its own pair of the leads. The corresponding Hamiltonian
reads: 

kri kri kri i i i i i+ i ' ri kri i
kri i i ' kri

H c c c c U n n U n n t ( c c h.c )+ + +
−= + + + + +ĺ ĺ ĺ ĺ ĺ1 2σ σ σ σ σ σ σ σ σ σ

σ σ σσ σ

ε ε ,     (1)

 where i numbers the dots (i = 1, 2) and leads are labeled by (i,  r) (r = L,  R). εiσ = εi + σh,
σ = ±1 (we set |e|  =  g =  μB  =  kB  = 1).  The first term describes electrons in the electrodes,
the second represents the field dependent site energies, the third and fourth accounts for intra
and intercoulomb interactions and the last one describes the tunneling.

For  strong  inter  and  intradot  interactions  the  Kondo  effect  has  two  possible  sources,
the spin and  orbital  degeneracies.  In  the following we restrict  to  the case,  where the spin
degeneracy is removed by an external magnetic field (ε1σ = ε2σ, ε1↑ ≠ ε2↓).

Assuming quasi-elastic transport, for which the current conservation rule is fulfilled for any

ω, one can express the current I = i
i
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σ
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where  ρiσ(ω)  =  (1/π)  Im ( )r
iG σ ω  and  fir are  Fermi  distribution  functions  of  the  electrodes.

The current,  the  distribution  functions and the  Green’s functions  are  also  the  functions  of
temperature, field and bias voltage. For simplicity of considerations we restrict here to the case
of identical dots (εi ≡ ε0), identical electrodes and to the equal couplings to the dots i.e. tri ≡ t.
The bare Green’s functions of the electrodes ( )1r kr krk kg g gσ σ σω ε= = −şĺ ĺ  are taken in
the form 0g = iπρ− , where  0ρ = 1/2D is the assumed constant density of states for  ε <  D
and  D is the half of the bandwidth of electrons in the electrodes.  Consequently the elastic
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couplings to the electrodes are energy independent  Γirσ (ω) = 2πt2ρ0 ≡ Γ (we set  Γ = 1). The
spin-resolved nonlinear conductance can be calculated form (2) by numerical derivative Ğσ(V)
≡ ,I Vσ∂ ∂  Iσ = I1σ + I2σ.

For strong interactions (U1, U2, U) → ∞ and deep dot level ( εiσ >> Γ ) the retarded Green’s
function can be approximated by the following multipole expression: 
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where 0Σ  = iΓ is the self-energy for the noninteracting QD due to tunneling of the iσ electron,
Ω is a set of the quantum numbers labeling the virtual intermediate states in the tunneling and
nΩ denotes  the  average  total  occupation  of  these  states.  Ω = {( ,i σ),(i, σ),( ,i σ)},  nΩ  
= ll

n
Ω∈ĺ  and  { 1

is,lΣ }  denote  the  correlation  parts  of  the  self-energy  (1  =  2,  2 =  1).
Expression (3) is a simple generalization to the DQD system case of the single dot formula of
Meier et al. [1] derived by the EOM technique with the decoupling procedure for higher order
Green’s functions which neglects correlations in the leads. Formulas (3) and (4) correspond to
the approximation, which separately takes into account the isospin fluctuations, spin fluctua-
tions and fluctuations of strongly coupled spin and isospin. 
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δiσ describes decoherence due to a finite bias voltage or field induced level splitting. An esti-
mate of the lifetime can be obtained from perturbation theory [1].

The first sequence of correlated tunneling represented by 1
,i iσ σΣ  occurs through the inter-

mediate virtual states of the same spin but from different dot. They induce the fluctuations of
the single dot occupations (the orbital isospin flips). As a result the orbital Kondo resonances
for each spin channel is built up. The second type of tunneling processes ( 1 1

,, i ii i σ σσ σ −−Σ = Σ )
link the nondegenerate states and cause the singularity of self-energy in the regions separated
from Fermi  level  by  Zeeman  splitting.  In  the  limit  of  the  vanishing  magnetic  field  they
correspond to the spin Kondo effect and to the simultaneous fluctuations of spin and isospin.
The neglected processes, which mix the above mentioned three types of fluctuations are of
special importance for systems, close to the full fourfold spin-orbital degeneracy. Their role is
under  investigation  by  more  careful  treatment  of  EOM equations  and  the  results  will  be
published elsewhere. Let us only comment here on the spurious effect, which occurs in the
Meyer approach for finite bias, also in the case of the single dot. The imaginary part of the self
energy exhibits two steps, one for each chemical potential (their heights for δiσ → 0 are equal
Γ/2). Consequently the shifted Kondo peaks dramatically differ in their widths. This effect has
not been observed in more rigorous approximations [8] and therefore we believe that it is only
an artifact  of the method. In the following we approximate Im 1

, ( )i l VσΣ  by Im 1
, ( 0),i l VσΣ =

what removes this unphysical difficulty. 
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Fig.  1.  Total  density  of  states  of  the  ca-
pacitively  coupled  double  quantum  dot  in
magnetic  field  h = 0.03  calculated  for  the
bare dot energy ε0 = 3.3 (Γ is the energy unit)

Figure 1 presents the total density of states (DOS) of the DQD system for finite magnetic
field and vanishing bias voltage V → 0 in the case of the deep dots levels. We do not discuss
here any decoherence effects and the calculations were performed for δ = δiσ = 0.001. The shift
of the broad charge fluctuation peak from the bare positions εiσ  reflects the renormalization of
the dots levels by spin and orbital isospin fluctuations.

Fig. 2. Spin dependent DOS of DQD in magnetic field h = 0.03 for spin up (solid line) and spin down
(dashed line), ε0 = 3.3. a) zero bias voltage V = 0, b) V = 0.08

The spin-projected densities of states plotted in the narrow energy region around  EF are
shown on Fig. 2a. The similar triple peak structure around EF in the DOS of double dot system
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was earlier found by Pohjola et al. within the resonant-tunneling approximation [8]. The peak
at the Fermi level corresponds to the orbital isospin fluctuations and the satellite peaks located
roughly in the positions  ± 2h are  due to  the tunneling processes  involving levels split  by
the field.  The  satellite  peaks are characterized by different  spin orientations.  A small  spin
asymmetry is also visible for the central Kondo resonance, what for the deep dots level case, is
mainly due to the occurrence of other (spin-dependent) many-body resonances in its vicinity.
The spin asymmetry of the Kondo peak manifests also in the slave boson calculations [9].
Obviously more rigorous calculations are desired for the definite conclusion. This question is
important for the spin-filtering problem. The different spin polarization of the lower and upper
satellite peaks should reflect in the strong spin dependence of inelastic tunneling. The effect
can  be  masked  however  by  strong  decoherence.  For  stationary  transport,  discussed  here,
different polarizations of the satellite peaks have only small influence. The reason for that is
explained  on  Fig.  2b,  where  the  spin-projected  DOS  is  plotted  for  finite  bias  voltage.
The potential of the left electrode is assumed to be zero. A voltage between the left and right
leads causes the Kondo peaks to split, leaving a peak in DOS at the chemical potential of each
lead. The satellite peaks also split by  V.  For  V ≈  ± 2h the satellite peaks of opposite spin
polarization  enter  from the  opposite  sides  the  energy region  between the  Fermi  levels  of
the leads and consequently the peaks in the differential conductance build up.

Fig. 3. Differential conductance  vs. applied
bias for spin up (solid line) and spin down
(dashed line). Magnetic field  h = 0.03 and
dot energy ε0 = 3.3

Fig. 4.  Differential  conductance  vs.  applied
bias for spin up (solid line) and spin down
(dashed  line).  Magnetic  field  h = 0.03  and
dot energy ε0 = 2.75

This is presented on Fig. 3. The fact that the positions of the nonlinear conductance peaks
are determined by the strength of the field can be used in measuring the fields. The peaks for
the opposite spin orientations are slightly shifted and this effect increases moving with the
energies of the dots closer to EF  (e.g. by changing the gate voltages) (Fig. 4). Such an effect is

b)
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expected due to the increasing difference between the centers of up and down spin Kondo
resonances with moving towards mixed valence regime. It has to be emphasized that because
of  the  crudeness  of  our  approach  the  presented  preliminary  results  can  only  be  trusted
qualitatively. The more rigorous calculations on this problem, which also include the spin
asymmetry between the junctions, are under the way.

In conclusion, we studied transport through a capacitiviely coupled double quantum dot
placed  in  a  magnetic  field.  The  system exhibits  the  Kondo  effect  due  to  fluctuations  of
the “orbital”  isospin.  In  addition,  the  satellite  peaks above and  below the  Fermi  level  are
found. They are characterized by different spin polarization. Both the linear and nonlinear
conductances are  spin dependent and this dependence increases  when moving towards the
mixed valence regime. 
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