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Abstract: The  influence  of  annealing  on  the  magnetic  properties  of  MBE  grown  Au/Co/Au(111)
structures with ultrathin wedge-shaped Co layers has been studied by magnetooptical techniques. The
magnetization reversal process (upon a magnetic field applied in a perpendicular direction to the sample
plane as a function of Co layer thickness) was probed locally at room temperature by classical magneto-
optical magnetometer and optical microscope, both based on the polar Kerr effect for the “as-deposited”
sample and those annealed at 150° and 250°C. Magnetic anisotropy constants were evaluated from a set
of magnetization curves measured in the magnetic field with components perpendicular and parallel to
the  sample  plane.  A drastic  decrease  of  the  coercivity  field,  remnant  magnetization  and  anisotropy
constants was observed for the sample annealed at 250°C. Enhanced diffusion at interfaces, induced by
thermal treatment, seems to be responsible for the observed effects.

Metallic magnetic multilayers composed of ferromagnetic and non-magnetic  films have
been a subject of great interest in recent years. Detailed knowledge of the thermal stability of
such  systems  is  crucial  particularly  for  practical  applications.  Speckmann  et  al.  [1]  have
investigated  in-situ magnetic domain structures and the magnetic surface morphology of Co
films upon annealing. The studies of reorientation transition in wedged Co/Au(111) films [2]
provide quantitative evidence for the increase of surface anisotropy after annealing. Annealing
induced increase of surface anisotropy has been observed for Co/Au multilayers [3, 4]. In the
past our group studied in detail [5-7] the magnetic properties of MBE grown ultrathin cobalt
films in a gold envelope. Co deposited on Au was in-situ annealed. These samples after gold
coverage were studied ex-situ. A decrease of effective magnetic anisotropy, related to volume
contribution,  was  observed  [6].  In  the  present  work  we are  focused  on  the  influence  of
annealing, measured  ex-situ, on the magnetic properties of Co layer embedded between gold
slabs.

The Au/Co/Au sandwiches were grown in a molecular beam epitaxy system  in the low
range of 1010 Torr. Al2O3 (11-20) wafers  10 mm × 10 mm in size buffered with a 20 nm Mo
layer  were  used  as  substrates.  Co  and  Mo were  evaporated  by electron  guns and  Au by
effusion cells at rates lower than 0.05 nm/s. All deposition processes were performed at room
temperature  (RT).  The  bottom 20  nm Au layer  deposited  directly  on  the  Mo buffer  was
annealed at 200°C to minimize its surface roughness. Then a cobalt wedge was grown with a
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thickness gradient of 1.2  × 107. Finally, the whole structure was covered with a 10 nm thick
gold layer. The growth process of the samples was monitored by RHEED. Details of sample
preparation  and  characterization  are  provided  elsewhere  [5].  The  samples  were  split  into
identical parts after the deposition process and annealed at three temperatures of 150°, 250°
and 300°C in an ultra-high vacuum for 20 minutes.  The results  here presented have been
obtained  for  three  samples:  (i)  a  reference  one  which was not  treated  thermally after  the
deposition; (ii) one annealed at Ta = 150°C and (iii) one annealed at Ta = 250°C. 

The measurements  of  magnetization  reversal  were  carried  out  at  room temperature  by
means of a magnetooptical magnetometer with the polar Kerr effect. The Kerr rotation angle ϕ
(H⊥, H = const) of a laser beam of 0.2 mm in diameter was determined locally, as a function
of magnetic field components H⊥,  H perpendicular and parallel to the sample plane, respec-
tively. 

Fig. 1. Examples of hysteresis loops measured for “as deposited” and annealed samples

Figure 1 shows  a set of hysteresis loops measured in the magnetic field perpendicular to
the sample plane. The dependencies of: HC(d ) – the coercivity field – and Φmax – the maximal
value of Kerr rotation – on Co layer thickness are shown in Fig. 2.  Φmax(d ) dependence is
similar for all studied samples. A drastic decrease of the coercivity field can be observed after
annealing at 250°C. 

Magnetic anisotropy K1eff and K2 constants were determined by fitting theoretical curves to
experimental data ϕ(H⊥, H = const), under the assumption that magnetic film total energy ETOT

(θ) is expressed by the following standard formula: 

ETOT(θ) = − H⊥MS cos(θ) − H|| MS sin(θ) + K1eff sin2(θ) + K2 sin4(θ)

where θ angle is measured from the sample normal direction: cos(θ) = ϕ(H⊥, H )/Φmax.  
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The influence of annealing  on magnetic anisotropy constants is  shown in Fig.  3.  The
dotted line shows K1eff(d ) curve fitted to experimental points measured for as-deposited sample
assuming K1eff(d ) = −2πMs

2 + K1v + (K1sb + K1so)/d  [4] where the demagnetization term as well
as the volume and both buffer (K1sb) and overlayer (K1so) surface anisotropy contributions are
taken into account. 

Fig. 2. Cobalt thickness dependencies of : a) maximal Kerr rotation; b) coercivity field. “As deposited” –
circles, annealed at 150°C – squares, annealed at 250°C – triangles
 

Fig. 3. Thickness dependencies of anisotropy contants in the as deposited and annealed samples

Annealing at Ta =150°C practically does not affect the magnetic parameters in comparison
with the reference as-grown sample. A drastic decrease of magnetic anisotropy is found upon
annealing at 250°C. 

Enhanced diffusion at the interfaces, as a consequence of annealing, seems to be responsi-
ble for the observed changes.
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