
MOLECULAR PHYSICS REPORTS 40 (2004) 95-103

SIZE-INDUCED  LOCALIZATION  OF  QUANTIZED
MAGNETOSTATIC  MODES  IN  DIPOLAR  NANOCUBES

M. KRAWCZYK1,  H. PUSZKARSKI1,  AND  J.-C. S. LÉVY2

1Surface Physics Division, Faculty of Physics, Adam Mickiewicz University
Umultowska 85, 61-614 Poznań, Poland

2Laboratoire de Physique Théorique de la Matière Condensée, case 7020
Université Paris 7, 2 place Jussieu, 75251 Paris Cédex 05, France

Abstract. We investigate the dynamical properties of a system of interacting magnetic dipoles disposed
in sites of an sc lattice and forming a cubic-shaped sample. The applied magnetic field is assumed to be
oriented along the central axis connecting opposite cube face centers, magnetizing uniformly the whole
sample,  all  the  dipoles  being aligned  parallelly in  the  direction  of  the  applied  field.  The frequency
spectrum of magnetostatic waves propagating in the direction of the applied field is found numerically
by solving  the  Landau-Lifshitz  equation  of motion;  the  mode  amplitude  spatial  distributions  (mode
profiles)  are depicted  as well.  It  is  found  that  only the  two energetically highest  modes have  bulk-
extended character. All the remaining modes are of localized nature; more precisely, the modes forming
the lower part of the spectrum are localized in the subsurface region, while the upper-spectrum modes
are localized around the sample center. We show that the mode localization regions narrow down as
the cube size increases and in sufficiently large cubes one obtains practically only center-localized and
surface-localized magnetostatic modes.

1. The  development  of  nanotechnology in  recent  years  allowed  to  design  nanometric
ferromagnetic materials of any required shape with a large size variation range [1].  Small
magnets and particles have raised an increasing interest due to their potential application in
magnetic  random  access  memory  (MRAM)  elements  and  ultrahigh-density  storage.  This
interest also involves the sample ability to rapidly change the magnetization state in order to
optimize  the  individual  recording  time.  Particularly,  magnetostatic  modes  are  of  practical
importance in this matter (especially in magnetization reversal processes), by reason of their
low frequency range.

The localized  magnetostatic  mode  dynamics  has  been  investigated  by several  authors.
Berkov  et al.  [8] studied the spin wave frequency spectrum and spatial distribution in thin
 μm-sized magnetic film samples. The lowest-frequency modes were found to correspond to
oscillations restricted to the boundary regions, which start to “propagate” inside a rectangular
magnetic sample as the frequency increases.  Tamaru et  al.  [3]  applied a spatially resolved
FMR technique to quantized magnetostatic mode imaging in small magnetic structures. They
identified  quantized  magnetostatic  modes  in  the  obtained  spectra,  and  from the  observed
spatial distribution of magnetization response at each mode peak deduced that the number of
mode nodes decreased with increasing bias field. However, in their data interpretation some
discrepancies were found between the measured mode frequency values and those calculated
on the basis of the Damon-Eshbach theory [4]. An exact theory of spin wave mode quantiza-
tion in small magnetic structures needs to be developed.
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Our theoretical approach is based on a modified Draaisma-de Jonge treatment [5] used in
the dipolar energy calculation. In the original Draaisma-de Jonge treatment a ferromagnetic
film is considered as a  set  of discrete magnetic  dipoles  regularly arranged in a  crystalline
lattice. The dipolar energy is calculated by collecting contributions from each dipolar lattice
plane assumed to be parallel to the film surface. The dipoles within each plane are divided into
two sets: those within a circle of radius R and those beyond that circle; the total contribution of
the former set is calculated discretely through summing over the dipoles, while the contribu-
tion of the latter set is evaluated by integration (the circle radius should be large enough to
assure reliable  final  results).  In the approach used in our study, the discrete  summation is
performed over  all the dipoles within a given dipolar plane; thus, the integration is avoided,
and no approximation is involved in our dipolar energy evaluation.

2. We shall consider a system of magnetic moments rµ  arranged regularly in sites  r  of
a simple cubic crystal lattice. The system is assumed to form a rectangular prism with square
base  (see  Fig.  1a).  Let  the prism base determine the (x,  y)-plane of  a  Cartesian reference
system, with the z-axis perpendicular to this plane. The reference point (0, 0, 0) shall be placed
in the central site of the prism bottom.

Let us calculate magnetic field Rhr
r

 “produced” by all the prism dipoles in a site indicated
by internal vector  R . According to the classical formula (obtained using the linear approxi-
mation), field Rhr

r
 can be expressed as follows (in the SI units): 
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the above sum involving all  the sites  except the reference point  (i.e.  the site with position
vector Rr ≡ ). The lattice planes parallel to the prism base shall be numbered with index
n  0, N  1 (see Fig. 1b), and the sites within each plane indexed with vector ˆ ˆ ,r a pi qj = + P

r

defined by integers p, q  L, L. This means that the position of the sites in which the magnetic
moments are located, indicated by vector ,rr  shall be defined by a set of three integers, (p, q,
n): 

[ ], , , , , , and 0, 1r r an a p q n p q L + L n N ≡ ≡ ∈ − ∈ − P
r r

, (2)

a  denoting the  lattice  constant.  Thus,  the  considered  prism contains  N(2L +  1)2 magnetic
moments. Below we shall focus on the magnetic field on the z-axis only, assuming its direction
to be solely allowed for magnetic wave propagation. Hence, we put [ ]0, 0,R a n′≡

r
, where n  

0,  N  1,  and re-index the dipole field:  ' Rnh h≡ r
r r

 Additionally, we shall assume that all  the
magnetic moments within a single plane n are identical, i.e.: 

[ ], , , for any     and   .n p q n p qµ µ≡r r
(3)

Note that by assuming rn
rr
µµ ≡  all the magnetic excitations propagating in plane (x, y) are

excluded from our analysis, and z axis becomes the only direction of propagation allowed.
In order to obtain a simpler expression of  nh ′  we introduce a symmetric matrix whose

elements, , ' ,n nD  are defined as follows: 

96



Size-induced Localization of Quantized Magnetostatic Modes

( ) ( )

( )

22 2

, ' 5 222 2,

1
2

n n
p q

p q n n'
D

p q n n'

+ − −
=

 + + − 

∑ . (4)

With this matrix, the magnetic field reads: 
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It is convenient to introduce here the notion of  magnetization, a phenomenological quantity,
which in the considered case of simple cubic lattice can be defined as follows: 

3/ .n nM aµ=
r r

(6)

Then, (5) becomes: 
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It  should  be  remembered  that  site  (0,  0,  n )  is  excluded  from  the  sums  appearing  in
the equation (4). Up to now, the direction of dipole arrangement has not had much importance
in our reasoning. Now we shall consider the case with dipoles arranged along the z-axis only.

3. In this paragraph we shall consider a magnetic prism placed in a static magnetic field,
H0, applied along the z-axis (Fig. 1). Field H0 is assumed to be strong enough to arrange all
the magnetic moments along the  z-axis. Then, the magnetization vector  can be regarded as
a superposition of two components (Fig. 1): static (parallel to the z-axis) and dynamic (lying in
the (x, y)-plane): 

ˆ
SR RM M k m= +r r

r r  ; (8)

MS is the static magnetization, assumed to be homogeneous throughout the sample, and vector
m denotes the dynamic magnetization, perpendicular to SM . Similarly, the dipole field, nh ′ ,
can be resolved into two components: static,  s

nh ′  (parallel to the  z-axis), and dynamic,  d
nh ′

(lying in the (x, y)-plane): 
s d

n' n' n'h h h= +
r r r

. (9)

These two components of the dipole field can be easily found from (7). By replacing the third
component  of  the  magnetization  vector  with  the  static  magnetization  (i.e.  by  putting

S
z
n MM ≡ , and the two other components, x

nM  and y
nM , with the respective components of

the dynamic magnetization, x
nm  and y

nm , the following formulae are obtained: 
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element Dn, n  being defined by (4).
The magnetic moment dynamics is  described by the phenomenological  Landau-Lifshitz

equation (LL): 
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eff , RH r
r

 denoting the effective magnetic field acting on the magnetic moment in site R . This
effective field is a superposition of two terms only: the applied field,  0H , and the field  nh ′
produced by the magnetic dipole system: 

eff, ' 0 'eff, n nRH H H h≡ = +r
rr r r

 . (13)

Considering (9), we can write further: 

( )eff, ' 0 ' '
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 ; (14)

the above-introduced dipole field components (static and dynamic) being defined by (10) and
(11).

The LL equation becomes: 
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We shall solve it using the linear approximation, i.e. neglecting all the terms with m squared.
Assuming the standard harmonic time-dependence of the solutions: ~ i t

nm e ω−
′

r , (15) becomes:
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Ω and  ΩH denoting the  reduced  frequency and the  reduced  field,  respectively,  defined as
follows: 
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Two complex variables are now introduced for convenience: 
x y

n n nm m im± = ±  ; (18)

with these new variables, (16) splits into two independent identical scalar equations for  +
nm

and −
nm ; this means we are dealing with magnetostatic waves polarized circularly. Therefore,

it is enough to consider only one of these two equations, e.g. that for +
nm : 
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The above equation can be rewritten as follows: 
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Note that, according to the assumption made at the beginning of this paragraph, the eigen-
values  Ω (being  reduced  frequencies)  correspond  to  magnetostatic  waves  propagating  in
the direction of the applied field, i.e. along the central axis shown in Fig. 1.

Fig.  1.  (a)  The prism sample considered  here;  the  case in  which the  applied  field,  0H ,  sets the
magnetic moments in the direction perpendicular to the prism base (i.e. along the z-axis). The prism
“thickness” is (N  1)a, and the square base side width is 2La (a denoting the lattice constant). The
magnetostatic waves are assumed to propagate along the  z-axis (i.e. in the direction of the applied
field). (b) The planar prism model used in our calculations; the dipolar field entering the equation of
motion is calculated numerically along the central z-axis

In the remaining part of our work we will be considering only the cubic-shaped samples,
i.e. starting from this point we always assume 2L  N  1. We also assume particular values for
μ0H0 =  0.2  T and  MS =  0.139  ·  106 Am1 (YIG  magnetization)  with  resulting  value  for
the reduced field ΩH = 14.374. However, we have to emphasis that selection of this particular
value for  ΩH is not essential for results to be presented in subsequent sections of this work,
since the distribution of eigenvalues  Ω and profiles of modes associated with them are not
sensitive to the choice of particular ΩH value: the particular value of ΩH  only sets the whole
spectrum in a given frequency region and if  ΩH changes the whole spectrum is shifted to
another region, but the relative distribution of mode eigenfrequencies remains unchanged.

4. We shall investigate magnetostatic excitations in a cube of size 40a (a being the lattice
constant). The cube consists of 41 planes normal to the  z-axis and numbered with index  n,
ranging from  n =  0  (the  left  face)  to  n =  40  (the  right  face).  The  effective  dipole  field
calculation procedure  applied in the previous paragraphs allows to find the field  in  z-axis
points only, i.e. along the cube central axis, passing through opposite cube face centers; this is

99



M. Krawczyk et al.

the idea of the approximation used throughout this study, and henceforth referred to as central-
axis approximation (CAA). With these assumptions, the problem of motion − to be solved on
the basis of (20) − reduces to a single dimension in the space of variable n; the domain of the
investigated motion is the interval n  (0, N  1), between two opposite cube face centers.

Fig. 2. The quantized magnetostatic mode frequencies vs. the cube size, N; m indicates the mode number

Figure  2  presents  the  discrete  spectra  of  numerically  calculated  magnetostatic  mode
frequencies in a cube of variable size; the spectrum evolution with increasing N, or cube size,
is visualized by the depicted frequency branches, each corresponding to one mode of a fixed
number m. The plot shows clearly that only in the lowest N value range (N < 50) the frequency
spectrum changes in a  significant  way; above this range, the  frequency values stabilize at
levels independent of  N. A striking feature is that the frequencies of the two highest modes,
m = N  1  and  m =  N,  as  well  as  those  of  the  two lowest  ones,  m =  1  and  m =  2,  are
pronouncedly separated from the rather uniform “band” formed by the other mode frequencies.
In Figure 3, showing |m+| mode profiles in a 40a  40a  40a cube, these “detached” modes
reveal quite distinct amplitude distributions, differing from those of the other modes: modes m
=  N  1 and  m =  N appear  to be of the  bulk-extended (BE) type (with antisymmetrical and
symmetrical  amplitude  distribution,  respectively),  whereas  modes  m =  1  and  m =  2  are
surface-localized (SL), the lower one being antisymmetrical, and the higher one symmetrical.
All  the  other  modes,  within the “band”,  can be qualified  as  localized (L),  their  maximum
amplitudes localizing in some specific regions inside the sample; as these localization regions
are found to vary with the mode number, the mode localization appears to depend on the mode
frequency.
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Fig. 3. Numerically calculated magnetostatic mode |m+| profiles in a cubic sample of edge size 40a;
the profiles are depicted along the central axis (indicated in Fig. 1). The modes are divided here into
symmetrical  (right  column) and antisymmetrical  (left  column) groups.  The localized modes can be
regarded as a family consisting of three mode localization types: central-bulk, non-central and surface
localization

To examine this relation in detail, let’s note that the band modes can be divided into two
groups: modes m = 3 24 and m = 25 39, showing different localization regions. A characteristic
feature of the first-group modes is a zone of zeroing amplitudes around the sample center; two
non-zero  amplitude  regions  are  present  at  both  sides  of  the  central  “dead”  zone  with
amplitudes reaching a maximum at a certain point. The localization reaches the sample center
for the modes of the other group (i.e. m = 2539); typical for this group, the central localization
region tightens around the sample center as mode energy increases. With respect to the above-
discussed localization properties in both groups, the second-group modes can be qualified as
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center-localized (CL),  and  the  first-group ones  as  non-central  bulk-localized (NCBL) (or,
alternatively, empty-center bulk localized).

5. Let’s increase the cube size to examine its effect on the mode energy spectrum and
profiles. Figure 4 presents a juxtaposition of profiles in cubes of two different sizes: 2L = 40

Fig. 4. Juxtaposition of magnetostatic mode profiles in two cubes of different sizes. Note that when
the cube size increases, the lower modes tend to localize in the surface region, while the upper modes
become strongly localized around the cube center; the two highest modes remain practically unchanged

and 2L = 100. The profile invariance is found to be limited to the BE modes only (m = 1; 2)
whose  profiles  remain  unchanged  in  spite  of  the  size  increase.  The  other  states  reveal
apparently changed localization: the NCBL modes in the 2L = 100 cube, showing substantially
larger dead regions (with respect to the 2L = 40 cube), are practically of sub-surface localized
(SSL) nature; in the CL modes, the localization zone has tightened around the strict sample
center.  Thus,  we can  anticipate  that  further  size  increase  shall  result  in  a  deepening  of
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the above-mentioned  localization  changes,  and  that  consequently,  the  magnetostatic  mode
spectrum in large cubic samples shall consist of three clearly different mode groups: (a) two
highest-frequency  bulk-extended modes (AS and S),  (b)  center-localized  modes with inter-
mediate frequencies, and (c) lowest-frequency surface-localized modes.

A problem to be solved next is the mode localization behaviour when the sample is “de-
formed”,  losing its  cubic  symmetry.  Another  question  requiring future investigation is  the
mode localization dependence on mode propagation direction. In another study we are going
to examine magnetostatic modes propagating perpendicularly to the applied field.
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