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Abstract. We describe a very efficient formalism for calculating transmission and reflection matrices
from first principles in layered materials. Within the framework of spin density functional theory and
using  tight-binding  muffin-tin  orbitals,  scattering  matrices  are  determined  by  matching  the  wave-
functions at the boundaries between leads which support well-defined scattering states and the scattering
region. The calculation scales linearly with the number of principal layers N in the scattering region and
as the cube of the number of atoms H in the lateral supercell. For metallic systems for which the required
Brillouin zone sampling decreases as H increases, the final scaling goes as H2N. In practice, the efficient
basis set allows scattering regions for which H2N ~ 106 to be handled.  The method is illustrated for
Co/Cu multilayers and single interfaces using large lateral supercells (up to 20  20) to model interface
disorder. Because the scattering states are explicitly found,  “channel decomposition” of the interface
scattering for clean and disordered interfaces can be performed.

One of the most important driving forces in condensed matter physics in the last thirty
years  has  been  the  controlled  growth  of  layered  structures  so  thin  that  interface  effects
dominate bulk properties and quantum size effects can be observed. In doped semiconductors,
the large Fermi wavelength of mobile charge carriers made it possible to observe finite size
effects for layer thicknesses on a micron scale. Much thinner layers must be used in order to
make such observations in metals because Fermi wavelengths are typically of the order of an
interatomic spacing. Nevertheless, following rapidly on the heels of a number of important
discoveries in semiconductor  heterostructures,  interface-dominated effects such as interface
magnetic anisotropy, oscillatory exchange coupling and giant magnetoresistance (GMR) were
found  in  artificially  layered  transition  metal  materials.  Reflecting  the  shorter  Fermi
wavelength, the characteristic length scale is of order nms.

Our main purpose here is to briefly outline a scheme suitable for studying mesoscopic
transport in inhomogeneous, mainly layered, transition metal magnetic materials. We require
that our computational scheme be (i) physically transparent, (ii) first-principles, requiring no
free  parameters,  (iii)  capable  of  handling  complex  electronic  structures  characteristic  of
transition metal elements and (iv) very efficient in order to be able to handle lateral supercells
to study layered systems with different lattice parameters and to model disorder very flexibly.
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A  tight-binding  (TB)  muffin-tin-orbital  (MTO)  implementation  of  the  Landauer-Büttiker
formulation  of  transport  theory  within  the  local-spin-density  approximation  (LSDA)  of
density-functional-theory (DFT) satisfies these requirements very well.

Because wave transport through interfaces is naturally described in terms of transmission
and  reflection,  the  Landauer-Büttiker  (LB)  transmission  matrix  formulation  of  electron
transport gained rapid acceptance as a powerful tool in the field of mesoscopic physics [1, 2],
once the controversies surrounding the circumstances under which different expressions should
be  used  had  been  resolved  [1].  The  two-terminal  conductance  of  a  piece  of  material  is
measured  by  attaching  leads  on  either  side,  passing  a  current  through  these  leads  and
measuring the potential drop across the scattering region. In the LB formulation of transport
theory, the conductance G is expressed in terms of a transmission matrix t = t(EF) 
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where the element tμν is the probability amplitude that a state ν  in the left-hand lead incident on
the scattering region from the left (see Fig. 1) is scattered into a state μ  in the right-hand lead.
The  trace  simply  sums  over  all  incident  and  transmitted  “channels”  ν and  μ and  e2/h
is the fundamental unit of conductance. In most current work on first-principles transport [3, 6]
the conductance is calculated directly from Green’s functions expressed in some convenient
localized orbital representation [7]. Explicit calculation of the scattering states is avoided by
making use of the invariance properties of a trace. Because we want to make contact with
a large body of  theoretical  literature on mesoscopic  physics and address a  wider  range of
problems in the field of spin-dependent transport, we calculate the microscopic transmission
and reflection matrices t and r. By using a real energy, we avoid the problems encountered,  

Fig.  1.  Sketch of the  configuration used in  the  Landauer-Büttiker  transport  formulation  to  calculate
the two terminal conductance. A (shaded) scattering region (S ) is sandwiched by left- (L ) and right-hand
(R ) leads which have translational symmetry and are partitioned into principal layers perpendicular to
the transport direction. The scattering region contains N principal layers but the structure and chemical
composition are in principle arbitrary
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when a small but finite imaginary part of the energy is used, in distinguishing propagating and
evanescent states. The Landauer-Büttiker formalism satisfies our first requirement of physical
transparency.

In developing a scheme for studying transport in transition metal multilayers, a fundamen-
tal difference between semiconductors and transition metals must be recognized. Transition
metal atoms have two types of electrons with different orbital character. The  s electrons are
spatially  quite  extended  and,  in  solids,  form broad  bands with low effective  masses;  they
conduct easily. The  d electrons are much more localized in space, form narrow bands with
large effective masses and are  responsible for  the magnetism of transition metal elements.
The “magnetic”  electrons,  however,  being  itinerant  do  contribute  to  electrical  transport.
The appropriate framework for describing metallic magnetism, even for the late 3d transition
metal  elements,  is  band  theory [8].  An extremely successful framework exists  for  treating
itinerant electron systems from first-principles and this is the Local Density Approximation
(LDA) of Density Functional Theory (DFT). For band magnetism, the appropriate extension to
spin-polarized  systems,  the  local  spin-density  approximation  (LSDA)  satisfies  our  second
requirement of requiring no free parameters [9].

Oscillatory exchange coupling in layered magnetic structures was discussed by Bruno in
terms of generalized reflection and transmission matrices [10] which were calculated by Stiles
[11,  12]  for  realistic  electronic  structures  using  a  scheme  [13,  14]  based  on  linearized
augmented plane waves (LAPWs). At an interface between a non-magnetic and a magnetic
metal,  the  different  electronic  structures  of  the  majority  and  minority  spin  electrons  in
the magnetic  material  give rise  to  strongly spin-dependent  reflection [15,  16].  Schep used
transmission and reflection matrices calculated from first-principles with an embedding surface
Green’s function method [17] to calculate spin-dependent interface resistances for specular
Co/Cu interfaces embedded in diffusive bulk material [18]. The resulting good agreement with
experiment  indicated  that  interface  disorder  is  less  important  than  the  spin-dependent
reflection and transmission from a perfect interface. Calculations of domain wall resistances as
a  function  of  the  domain  wall  thickness  illustrated  the  usefulness  of  calculating  the  full
scattering  matrix  [19,  20].  However,  the  LAPW basis  set  used  by Stiles  and  Schep  was
computationally  too  expensive  to  allow  repeated  lateral  supercells  to  be  used  to  model
interfaces  between  materials  with  very different,  incommensurate  lattice  parameters  or  to
model disorder. This is true of all plane-wave based basis sets which typically require of order
100 plane waves per atom in order  to describe  transition metal  atom electronic structures
reasonably well.

Muffin-tin orbitals (MTO) form a flexible, minimal basis set leading to highly efficient
computational schemes for solving the Kohn-Sham equations of DFT [21, 23]. For the close
packed structures adopted by the magnetic materials Fe, Co, Ni and their alloys, a basis set of
9 functions (s,  p, and d orbitals) per atom in combination with the atomic sphere approxima-
tion (ASA) for the potential leads to errors in describing the electronic structure which are
comparable  to  the absolute  errors  incurred  by using the local density approximation. This
should be compared to typically 100 basis functions per atom required by the more accurate
LAPW method. MTOs thus satisfy our third and fourth requirements of being able to treat
complex electronic structures efficiently.
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The tight-binding linearized muffin tin orbital (TB-LMTO) surface Green’s function (SGF)
method has been developed to study the electronic structure of interfaces and other layered
systems.  When  combined  with  the  coherent-potential  approximation  (CPA),  it  allows  the
electronic structure, charge and spin densities of layered materials with substitutional disorder
to be calculated self-consistently very efficiently [24]. To calculate transmission and reflection
matrices  from  first  principles,  we  have  combined  the  wave-function  matching  (WFM)
formalism described by Ando [25] for an empirical tight-binding Hamiltonian, with an  ab-
initio TB-MTO  basis  [23].  The  method  which  results  has  been  applied  to  a  number  of
problems of current interest in spin-transport: to the calculation of spin-dependent interface
resistances where interface disorder was modelled by means of large lateral supercells [26]; to
the first principles calculation of the so-called mixing conductance parameter entering theories
of current-induced magnetization reversal [27] and the related problem of Gilbert damping
enhancement in the  presence of  interfaces  [28];  to  a  generalized  scattering formulation of
the suppression of Andreev scattering at  a ferromagnetic/superconducting interface [29];  to
the problem of how spin-dependent interface resistances influence spin injection from a metal-
lic ferromagnet into a III-V semiconductor [30]. These examples amply demonstrate that our
fourth requirement is well satisfied.
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