STRUCTURAL AND THERMAL PROPERTIES OF

AMORPHOUS $Gd_{65}Fe_{20-y}Co_yAl_{10}X_5$ (X = Si, B, Al) ALLOYS

Z. Śniadecki^a, S. Paczek^b, B. Idzikowski^a,

J. Marcin^c, J. Kováč^c, I. Škorvánek^c

^aInstitute of Molecular Physics, Polish Academy of Sciences,

M. Smoluchowskiego 17, 60-179 Poznań, Poland

^bFaculty of Applied Physics and Mathematics, Technical University of Gdańsk,

Narutowicza 11/12, 80-952 Gdańsk, Poland

^cInstitute of Exp. Physics, Slovak Academy of Sciences,

Watsonova 47, 040 01 Kosice, Slovakia

GdFeAl-based amorphous or nanocrystalline alloys are subject of extensive investigations because of their promising application as new magnetic refrigerants. Amorphous Gd₆₅Fe_{20-y}Co_yAl₁₀Si₅ (y = 5, 10, 15), Gd₆₅Fe₁₀Co₁₀Al₁₀B₅ and Gd₆₅Fe₁₀Co₁₀Al₁₅ ribbons were prepared by melt-spinning method. The structural and thermal properties were investigated using X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The XRD analysis revealed that as-quenched Gd-Fe-Co-Al-X (X = Si ,B, Al) alloys possess amorphous structure. Two distinct diffuse diffraction peaks are visible. For some compositions additional peaks belonging to *hcp*-Gd grains are present, similarly as reported recently for Gd-Al-Mn system [1]. DSC curves were collected at different constant heating rates from 10 to 50 K/min. Crystallization temperatures T_x of Gd-Fe-Co-Al-X samples range from 290 to 340^oC. Activation energies of crystallization E_a were calculated from the Kissinger relation. The thermal stability of amorphous phase was found to be highest for Gd₆₅Fe₁₀Co₁₀Al₁₅ alloy where Ea reaches 345±20 kJ/mol. [1] S. Gorsse, B. Chevalier, G. Orveillon, Appl. Phys. Lett. 92 (2008) 122501