THE INVESTIGATION OF THE MAGNETIZATION REVERSAL MECHANISM IN THE Nd-Fe-B TYPE MAGNET, ALIGNED BY HOT DEFORMATION

M. Dośpiał¹, M. Nabiałek¹, M. Szota², W. Lipiec³, V. I. Nizhankovskii⁴, A.E. Ceglarek¹, P. Pietrusiewicz¹

¹Institute of Physics,²Institute of Materials Science, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland

³Electrotechnical Institute, ul. M. Skłodowskiej-Curie 55/61, 50-369 Wrocław, Poland ⁴International Laboratory of High Magnetic Fields and Low Temperatures, ul.

Gajowicka 95, 53-421 Wrocław, Poland

 $9.7~\mathrm{cm}$

The magnetization reversal mechanism in the Nd₁₆Fe₇₈B₆ hot densified magnet, aligned by means of die-upset forging have been investigated. The magnetic parameters have been derived from major hysteresis loop. The magneto-crystalline anisotropy constants K_1 and K_2 using Sucksmith-Thompson relation modified by Ram and Gaunt have been calculated from the high field measurements up to 5T. These data have been used to determine the theoretical value of coercivity as a function of the angle Ψ_0 between the sample easy axis and the applied magnetic field direction. The experimental value of coercivity as a function of Ψ_0 has been determined from the demagnetization curves measured for different angles Ψ_0 . It was found that the best correlation between theoretical and experimental data have been achieved for magnetization reversal mechanism controlled partially by pining of domain walls on grain boundaries and nucleation processes.

-13.4 cm -

Subject category :

6. Soft and Hard Magnetic Materials

Presentation mode : poster

Corresponding author : M. Dośpiał

Address for correspondence :

Instytut Fizyki, Politechnika Częstochowska Al. Armii Krajowej 19 42-200 Częstochowa, Poland

Email address : mdospial@wp.pl