COMPOSITION STRATIFICATION IN STRAINED EPITAXIAL GARNET FILMS

V. Vishnevskii, A. Nedviga, V. Berzhansky, H. Milyukova, A. Nesteruk, H. Danishevskaya

Taurida National University, V. I. Vernadsky ave. 4, Simferopol, Ukraine, 95007

High-coercive garnet films (GF) can be effectively used in thermo-magnetic recording and creating micro-traps for ultracold neutral atoms such as ⁸⁷Rb. Because the optimal way to increase coercivity H_c is to make film-substrate lattices mismatch Δa , stresses occurred induce misfit dislocations and the facet GFs morphology is observed. The films non-uniformity can be enlarged technologically to create special types of micro-traps. It is possible due to the composition stratification in the GF; this effect is described in detail in the report. Mainly the films of (Bi,Lu,Sm)₃(Fe,Ga,Al)₅O₁₂ composition were investigated, however (Y,Tm,Gd,Bi)₃(Fe,Ga)₅O₁₂ and (Y,Bi)₃(Fe,Ga)₅O₁₂ systems were analyzed too. They were grown by LPE method on Gd₃Ga₅O₁₂ (111)-oriented monocrystalline substrates and characterized by $\Delta a = 0.074 - 0.103$ Å, $H_c = 100 - 1000$ Oe and Curie temperature $T_c = 50 - 200$ °C. The films chemical composition distribution was investigated on SEM supplied by energy dispersion analysis (EDA). To prevent mistakes conditioned by the EDA penetrating depth $(1-2 \mu m)$ only the GFs edges were analyzed. Layered films were synthesized. Significant differences in magnetic properties of their sub-layers were obtained. They are conditioned by the non-uniform distribution of garnet-forming elements occurred along the film crystallization front. Different T_c values in them allow to realize separate thermo-recording for creating through and non-through stable domain patterns and micro-traps on different levels above the GFs surface.

13.4 cm

Subject category:

6. Soft and Hard Magnetic Materials

Presentation mode:

poster

Corresponding author:

V. Vishnevskii

Address for correspondence:

Taurida National University, V. I. Vernadsky ave. 4, Simferopol, Ukraine, 95007

Email address:

domain@crimea.edu

 $9.7~\mathrm{cm}$