Domain walls generation and positioning in He⁺ ion bombarded Co/Au multilayers

M. Matczak^{a,b}, B. Szymański^a, Z. Kurant^c, D. Lengemann^d, M. Urbaniak^a, P. Kuświk^a, M. Tekielak^c, A. Ehresmann^d, A. Maziewski^c, F. Stobiecki^a

^aInstitute of Molecular Physics, PAS, M. Smoluchowskiego 17, 60-179 Poznań, Poland

^bFaculty of Technical Physics, Poznań University of Technology, Nieszawska 13a,

60-965 Poznań, Poland

 $^c\mathrm{Laboratory}$ of Magnetism, Faculty of Physics, University of Białystok, Lipowa 41, 15-424 Białystok, Poland

^dInstitute of Physics and Centre for Interdisciplinary Nanostructure Science and Technology, University of Kassel, Heinrich-Plett-Strasse 40, D-34132 Kassel, Germany

The generation and controllable movement of a straight domain wall is very interesting for applications in spintronics and information technology (e.g., racetrack memory [1]). We report on aimed manipulation of magnetic structure in sputtered Ti/Au/(Co/Au)_N ($t_{\text{Co}} = 0.8 \text{ nm}$, $t_{\text{Au}} = 1 \text{ nm}$, N = 1, 2, 3) multilayers. The magnetic properties of Co layers are characterized by the perpendicular anisotropy and intentionally induced coercive field (H_{C}) gradient along a given coordinate in the sample plane (dH_{C}/dx). The value of (dH_{C}/dx) was determined by a precise change of H_{C} (10 keV) ions dose (D) along the x coordinate (dD/dx). We have demonstrated, that in the layered systems with defined (dH_{C}/dx) the domain wall may by positioned by an appropriate choice of magnetic field. Moreover, using alternating magnetic field with decreasing amplitude a stripe-like structure can be generated.

[1] M. Hayashi et al., Science 320, 209 (2008)

← 13.4 cm −

Subject category:

5. Nano-structure, Surfaces, and Interfaces

Presentation mode:

poster

Corresponding author:

B. Szymański

Address for correspondence:

ul. Mariana Smoluchowskiego 17, 60-179 Poznań, Poland

Email address:

szyman@ifmpan.poznan.pl

 $9.7~\mathrm{cm}$