METAMAGNETISM OF THE Fe₂MnGa HEUSLER ALLOY

Y. V. Kudryavtsev^a, J. Dubowik^b, N. V. Uvarov^a and V. N. Iermolenko^a

^aInstitute of Metal Physics, National Academy of Sciences of Ukraine, 252680,

Kiev-142, Ukraine

^bInstitute of Molecular Physics, Polish Academy of Sciences, 60-179 Poznań, Poland

Magnetic properties and electronic structure of bulk and film Fe₂MnGa Heusler alloy (HA) samples have been investigated. It was verified that unlike most of full stoichiometric Heusler compounds, ferromagnetic bulk stoichiometric Fe₂MnGa with the Curie temperature of 780 K crystallizes in the ordered FCC lattice of Cu_3Au type with small amount of B2-phase. According to the results of our first-principle calculations free electron energy of ferromagnetic (FM) $[\mu_{total} = 6.78\mu_B, \mu_{Fe} = 2.19\mu_B, \mu_{Mn} = 2.55\mu_B$ and $\mu_{Ga} = -0.10\mu_B$ FCC phase is lower by about 0.06 eV than that of antiferromagnetic (AFM) phase with L_{21} structure. In a temperature range of 80 - 110 K a FM to AFM transition was observed with field cooling magnetization measurments. Additionally, Fe₂MnGa revealed metamagnetic behavior since increase in magnetic field suppresses the AFM spin arrangement. Depending on deposition conditions Fe_2MnGa films revealed a mixed structure: mainly BCC or FCC phases with some admixture of FCC or BCC phases, respectively. Fe₂MnGa HA films with mainly BCC structure show the same behavior as the bulk samples: the magnetization increases with decrease in temperature from the Curie temperature ($T_C \approx 300$ K) up to 110 K and then abruptly decreases up to zero due to transformation to AFM phase. According to DSC analysis FM/AFM transition of Fe₂MnGa films is not accompanied with any structural changes.

– 13.4 cm –

Subject category :

5. Nano-structure, Surfaces, and Interfaces

Presentation mode : poster

Corresponding author : Y.V.Kudryavtsev

Address for correspondence : Institute of Metal Physics, National Academy of Sciences of Ukraine, 252680, Kiev-142, Ukraine

Email address : kudr@imp.kiev.ua

9.7 cm