PURE AND CORE-SHELL CoFe₂O₄ NANOPARTICLES

P. T. Thoung^a, S. Ammar^b, N. Yaacoub^c, J. M. Greneche^c, N. Nedelko^a, S. Lewińska^a, A. Ślawska-Waniewska^a

 a Institute of Physics, Polish Academy of Sciences, Al. Lotnikow32/46 PL02668,

Warsaw, Poland

^bITODYS lab., Université Paris Diderot, 75205 Paris, France

^cLaboratoire de Physique de l'Etat Condense, UMR CNRS 6087, Université du Maine, 72085 Le Mans Cedex, France

Pure cobalt ferrite nanoparticles as well as core-shell structures composed of two magnetic materials with different characteristics ferrimagnetic CoFe_2O_4 core surrounded by an antiferromagnetic CoO surface layer, were prepared by a wet chemistry method. Microstructure and magnetic properties of these materials have been studied with Xray diffraction, transmission electron microscopy, ⁵⁷Fe Mössbauer spectrometry and static magnetic measurements. Pure CoFe_2O_4 nanoparticles form agglomerates and their behaviour is dominated by the interparticle magnetostatic interactions. In turn the core/shell nanoparticles are more susceptible to thermal fluctuations as the antiferromagnetic shell effectively reduces the interparticle coupling. These particles display a superparamagnetic behavior with a single blocking temperature indicating a strong exchange coupling between magnetic moments of the core and shell.

-13.4 cm -

Subject category :

5. Nano-structure, Surfaces, and Interfaces

Presentation mode : poster

Corresponding author : N. Nedelko

Address for correspondence : N. Nedelko Institute of Physics, Polish Academy of Sciences Al. Lotnikow 32/46 PL02668 Warsaw Poland

Email address : natalia.nedelko@ifpan.edu.pl

 $9.7~\mathrm{cm}$