XAS and XMCD studies of Ga^+ irradiation induced changes of Pt/Co/Pt nanostructure magnetic properties

P. Mazalski^a, A. Maziewski^a, M. O. Liedke^b, J. Fassbender^b, J. McCord^b, A. Wawro^c, A. Rogalev^d, F. Wilhelm^d

^a Faculty of Physics, University of Białystok, Lipowa 41, 15-424 Białystok, Poland
^b Helmholz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany

^c Institute of Physics, Polish Academy of Sciences, 02-668 Warszawa, Poland

^d European Synchrotron Radiation Facility (ESRF), BP 220, 38043 Grenoble Cedex,

France

In the our recent paper [J. Jaworowicz et al., APL95 (2009)] we have demonstrated an elegant route to tune the magnetic anisotropy of ultrathin sputter deposited Pt/Co(d=2.6 nm)/Pt films by uniform Ga⁺ ions irradiation at 30 keV. We have observed that with increasing irradiation dose the magnetization rotates from the in-plane into out-of-plane orientation and for a higher dose back into the plane. For the purpose of the present work we prepared Al₂0₃/Mo/Pt/Co(d=3.3 nm)/Pt samples by molecular beam epitaxy with initial in-plane magnetization. These samples were homogeneously irradiated with Ga⁺ ions with an ions dose ranging between 1*10¹⁴ and 1*10¹⁶ ions/cm². The irradiated samples were studied using classical magnetooptical Kerr effect, as well as Co K-edge X-ray absorption (XAS) and X-ray Magnetic Circular Dichroism (XMCD) spectroscopy techniques. From the XMCD spectra analysis [Y.S. Lee et al., PRB68 (2008); J. Bartolom et al, PRB77 (2008)] one can deduce the existence of an ordered L1₀ CoPt phase for the sample, where Ga⁺ irradiation has induced a preferential out-of-plane magnetization.

— 13.4 cm –

Subject category :

5. Nano-structure, Surfaces, and Interfaces

Presentation mode : poster

Corresponding author : P. Mazalski

Address for correspondence : Faculty of Physics, University of Białystok, Lipowa 41, 15-950 Białystok, Poland

Email address :

piotrmaz@uwb.edu.pl

9.7 cm