Conductance study of magnetic tunnel junctions with an ultrathin MgO barrier

 \mathbf{A} Zaleski^a, \mathbf{J} Wrona^a, \mathbf{M} Czapkiewicz^a,

W Skowroński^a, J Kanak^a, T Stobiecki^a ^aAGH University of Science and Technology, Department of Electronics

al. Mickiewicza 30, 30-059 Krakow, Poland

A magnetic tunnel junctions (MTJs) multilayer stack was studied, consisting of the following materials (thickness in nm): $PtMn(16)/Co_{70}Fe_{30}(2.0)/Ru(0.9)/Co_{40}Fe_{40}B_{20}(2.3)/$ /MgO t_{MqO} /Co₄₀Fe₄₀B₂₀(2.3). MgO barrier thickness (t_{MqO}) ranged from 0.6 to 1 nm, corresponding to a Resistance-Area (RA) products below 10 $\Omega \mu m^2$ and a Tunnel Magnetoresistance (TMR) ratio above 180 %. Stacks were prepared with varied Ar partial pressure (p_{Ar}) during MgO sputtering. Low p_{Ar} range was 1-3.8 mTorr, whilst high p_{Ar} was in the range 5.6-15 mTorr. For low tunnel barrier thickness ($t_{MqO} < 0.7$ nm) the appearance of structural defects is very likely. An extension of equivalent circuit model [Oliver et al. J.Appl. Phys. 91 4348 (2002)] was applied to the current-in-plane tunneling measurements of the multilayer stack wafer in order to analyse effect of p_{Ar} and t_{MaO} on TMR and RA. Good agreement was achieved between the model and experimental results of the shunt resistance contribution to conductance as a function of t_{MqO} for various p_{Ar} . Our approach can be very useful for characterization of the unpatterned MTJ wafers. Acknowledgments: Project supported by SPINSWITCH MRTN-CT-2006-035327, the Polish Ministry of Science and Higher Education grants (IP 2010037970 and NN 515544538), and the Foundation for Polish Science MPD Programme cofinanced by the EU European Regional Development Fund.

— 13.4 cm –

Subject category :

4. Spin Electronics and Magneto-Transport

Presentation mode : poster

Corresponding author : A.Zaleski

Address for correspondence :

al. Mickiewicza 3030-059 Krakow, PolandAGH University of Science and Technology

Email address :

zaleski@agh.edu.pl

 $9.7~\mathrm{cm}$