$\begin{array}{c} {\bf Magnetotransport\ properties\ of\ La_{0.55}Ca_{0.45}MnO_3/BaTiO_3}\\ {\bf composites} \end{array}$

M. Kiss^a, A. Vladescu^a, I. Balasz^a, O. Florea^a, A. Tunyagi^a, S. Mican^a,

R. Tetean^a and I. G. Deac^a

^aFacultatea de Fizica, Universitatea Babes-Bolyai,

Str. M. Kogalniceanu 1, 400084 Cluj-Napoca, Romania

We report the effect of BaTiO₃ content on the structure, magnetic and magnetotransport properties of (1-x) La_{0.55}Ca_{0.45}MnO₃ – x BaTiO₃ with $x \leq 0.8$. The samples were prepared by standard solid state technique. The x-ray and SEM analysis indicated that BTO and LCMO phases exist independently in the samples, without any sign of a new phase. The magnetic measurements do not show significant changes in Curie temperatures (T_C = 250 K), in coercivities (H_C = 0.04 T) and in the magnetic moment (m = $3.4 \mu_B/\text{Mn}$), suggesting the absence of interaction between the two phases. The system shows a conduction threshold at $x_c = 0.5$ where the resistivity increases substantially. The samples with x < 0.5 exhibit a metal - insulator transition at a temperature (T_p), that decreases with increasing BTO phase content, and is finally suppressed at x_c . The maximum magnetoresitance (MR) in 7 T was found to increase from 58 % for x = 0 (at 150 K) to 78 % for x = 0.3 (at 110 K). This work provides a promising method for increasing the magnetoresistance of manganites by composites with a proper insulator phase.

– 13.4 cm –

Subject category :

4. Spin Electronics and Magneto-Transport

Presentation mode : poster

Corresponding author : I. G. Deac

Address for correspondence : Facultatea de Fizica, Universitatea Babes-Bolyai, Str. M. Kogalniceanu 1, 400084 Cluj-Napoca, Romania

Email address : iosif.deac@phys.ubbcluj.ro

 $9.7~\mathrm{cm}$