Magneto-resistance of the $YBa_2Cu_3O_{7-\delta}$ single crystals with a small deviation from the oxygen stoichometry

R. V. Vovk¹ , V. M. Gvozdikov¹ , M. A. Obolenskii¹ , Z. F. Nazyrov¹ , V.V. Kruglyak² .

¹ Kharkov National University, 4 Svoboda Sq., 61077 Kharkov, Ukraine,

Ruslan.V.Vovk@univer.kharkov.ua, ² University of Exeter, Stocker road, Exeter, EX4 4QL, United Kingdom, V.V.Kruglyak@exeter.ac.uk

We study the excessive conductivity $\Delta \sigma$ as a function of temperature and angle between the magnetic field 15 kOe and the ab-plane α in untwinned YBa₂Cu₃O_{7- δ} single crystals with a small oxygen hypostoichiometry. Assuming that $\Delta \sigma \propto (T-T_c)^{-\beta}$ near the critical temperature T_c we found that the function $\chi(T) = -d(ln\Delta\sigma)/dT$ is characterized by the superconducting transition T_{c0} , vortex-lattice (VL) melting T_M , and the mean-field critical T_c temperatures. We found that: (i) the $\chi(T)^{-1}$ has a linear asymptotes $\beta_{c0}^{-1}(T-T_{c0})$ and $\beta_{c}^{-1}(T-T_{c})$ nearby the T_{c0} and T_{c} with $\beta_{c0} > \beta_{c} =$ 1/2 which means a crossover from the tree-dimensional-like (3D) behavior to the lower effective dimensionality. (ii) The transitional region $T_c - T_{c0}$ increases from 0.3K at $\alpha = 0$ to approximately 6K at $\alpha = 60^{\circ}$. (iii) The peaks at the T_M grow up and shift toward the T_{c0} with increasing α . (iv) The $\chi(T)$ displays a universal scaling in reduced coordinates. (v) The function $\Delta\sigma(T)$ displays a pseudogap behavior and the 3D-2D dimensional crossover. We relate these features with the Hikami -Larkin model for the fluctuation conductivity at $T > T_c$ and with the 3D-2D crossover on the VL melting line caused by the crossover of the upper critical magnetic field $H_{c2}(\alpha, T)$ through the elastic moduli of the VL which are polynomials of the ratio $H/H_{c2}(\alpha, T)$ at $T < T_c$.

1