Magnetoresistive Properties of La-Pb-Mn Perovskites I. Balasz-Muresan^a and E. Burzo^a

^aFaculty of Physics, Babes–Bolyai University, Cluj–Napoca, Romania

The La_{1-x}Pb_xMnO₃ perovskites, with $0.24 \le x \le 0.40$, crystallize in a rhombohedral-type structure having R3c space group. The resistivities increase from 5 K, up to temperatures T_m, situated in the range 184 K (x=0.2) and 240 K (x=0.4). At these temperatures there is a transition from metallic to semiconducting type behaviour. The T_m values are by $\cong 100$ K smaller than the Curie points, T_c. The activation energies at T > T_m+50 K can be described by an adiabatic hopping conduction mechanism. The activation energies increase from 0.112 eV (x=0.24) to 0.123 eV (x=0.4). Possible mechanisms for the metal to semiconducting transition, at lower temperatures than T_c, are analysed. The field and temperature dependences of the magnetoresistivities, MR, were studied. At 5 K and in field of 7 T, the MR values are situated between 46 % and 49 % and decrease up to 25–30 % at room temperature. The intergrain tunneling magnetoresistance as well as the intragrain contribution, respectively were analysed as function of temperature and external field. The polarizations at 5 K are situated between 0.73 and 0.85 and decrease up to $\cong 0.2$ at room temperature. The involved mechanisms in describing magnetoresistive behaviour are discussed.

– 13.4 cm –

Subject category :

4. Spin Electronics and Magneto-Transport

Presentation mode : poster

Corresponding author : I. Balasz–Muresan

Address for correspondence :

Faculty of Physics Babes-Bolyai University, Department of Physics of Advanced Materials and Technology Str. Mihail Kogalniceanu, Nr. 1 RO- 400084, Cluj-Napoca, Romania

Email address : ibalasz@gmail.com

 $9.7~\mathrm{cm}$