Electrical resistivity and electronic structure of the $\mathbf{Tb}_x \mathbf{Gd}_{1-x} \mathbf{Ni}_3$ system

G. Chełkowska ^a, A. Bajorek ^a, A. Chrobak ^a, M. Kwiecień - Grudziecka ^a

^aA. Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40 - 007 Katowice, Poland

In the paper the electric properties and electronic structure of the polycrystalline $\mathrm{Tb}_x\mathrm{Gd}_{1-x}\mathrm{Ni}_3$ intermetallic compounds are presented. The electrical resistivity $\rho(\mathrm{T})$ has been examined by a standard four - probe technique. The electronic structure measurements has been performed by using XPS method.

The partial replacement of Gd by Tb atoms causes the decrease of Curie temperature T_C and the increase of the residual resistivity. According to the Matthiessen rule the scattering mechanisms in $\rho(T)$ have been analyzed. Moreover, the reduced form of the electrical resistivity $\rho_Z(T-T_o)$ indicates a deviation from the linearity for x>0.2. This kind of behaviour can be explained as the dependence of density of d states near by the Fermi level (E_F) which are dominated by Ni3d states. The valence band spectra as well as the core level lines have been analyzed as the influence of Tb/Gd substitution on the electronic structure.

-13.4 cm –

Subject category :

3. Magnetic Structure and Dynamics

Presentation mode : poster

Corresponding author : G. Chełkowska

Address for correspondence :

A. Chełkowski Institute of Physics, Solid State Division, University of Silesia, Uniwersytecka 4, 40 - 007 Katowice

Email address :

gchelkow@us.edu.pl

 $9.7~\mathrm{cm}$