Effect of Tb/Gd substitution on crystal structure and exchange interactions of $Tb_xGd_{1-x}Ni_3$ intermetallic compounds

A. Chrobak ^a, A. Bajorek ^a, G. Chełkowska ^a

 $^a\mathrm{A.}$ Chełkowski Institute of Physics, University of Silesia,
Uniwersytecka 4, 40 - 007 Katowice, Poland

Intermetallic compounds of rare earth (RE) and transition (T) elements are very interesting form scientific point of view because of a mixture of localized (RE) and itinerant (T) magnetism. In the paper an influence of Tb/Gd substitution on crystal structure and exchange interactions of Tb_xGd_{1-x}Ni₃ (x = 0.0, 0.2, 0.5, 0.8, 1.0) polycrystalline compounds have been studied. The crystal structure of all samples was checked at the room temperature by means of X-ray diffraction (XRD). Exchange integrals of RE-RE (J_{RE-RE}), T-T (J_{T-T}) and RE-T (J_{RE-T}) atoms were evaluated from M(T) magnetization curves (2 K - 300 K, 2 T) based on the mean field theory (MFT) calculation. As it was shown the samples examined are single phase and crystallize in the PuNi₃ (space group R-3m) type of crystal structure. The Tb/Gd substitution causes the decrease of lattice parameters as well as the volume of the unit cell. A variation of the J_{RE-RE}, J_{T-T} and J_{RE-T} parameters in a context of the structural changes are also widely discussed.

_____13.4 cm _____

Subject category:

3. Magnetic Structure and Dynamics

Presentation mode:

poster

Corresponding author:

Artur Chrobak

Address for correspondence:

A. Chełkowski Institute of Physics, Solid State Division, University of Silesia, Uniwersytecka 4, 40 - 007 Katowice

Email address:

artur.chrobak@us.edu.pl

 $9.7~\mathrm{cm}$