Single-ion anisotropy effects in magnetic susceptibility of some $\rm Re^{IV}$ and $\rm Re^{IV}M^{II}$ complexes

E. Babiak a , R. Kubacik a , L. Kucharski a , P. Kozłowski a , A. Drzewiński b and G. Kamieniarz a

^aFaculty of Physics, A. Mickiewicz University, Poznan, Poland ^bInstitute of Physics, University of Zielona Gora, Zielona Gora, Poland

In this communication we analyse the effects of single-ion anisotropy on the zero-field susceptibility behaviour as a function of temperature for an oxalate-Re^{IV} mononuclear complex [1] and heterotetranuclear oxalato-bridged Re^{IV}M^{II} (M = Mn, Fe, Ni, Cu) complexes [2]. Re^{IV} is a 5d³ ion which ground state in the octahedral environment is given by the $^4A_{2g}$ term and is subject to a high value of the spin-orbit coupling and the strong magnetic anisotropy. Our analysis is based on the spin Heisenberg model and takes into account both the uniaxial and rhombic single-ion anisotropy term. We calculate within the exact diagonalisation technique the single-crystal and powder susceptibility for the systems in question. We find some symmetries in the behaviour of the single-crystal susceptibilities and their substantial dependence on the value of the rhombic parameter. We demonstrate that the differences in the single-crystal data are strongly reduced for the powder sample and we estimate some new values of the model parameters from a fit to experimental data.

- [1] R. Chiozzone et al., Inorg. Chem. 38, 4745 (1999)
- [2] J. Martinez-Lillo et al., Inorg. Chem., 48, 3027 (2009)

— 13.4 cm —

Subject category:

2. Quantum and Classical Spin Systems

Presentation mode:

poster

Corresponding author:

Grzegorz Kamieniarz

Address for correspondence:

Zakład Fizyki Komputerowej Wydział Fizyki Uniwersytet im. Adama Mickiewicza w Poznaniu ul. Umultowska 85, 61-614 Poznań

Email address:

gjk@amu.edu.pl

 $9.7~\mathrm{cm}$