Vibrational Spectra of Coordination Polymers Based on TCE-TTF I. Olejniczak^a, A. Łapiński^a, R. Świetlik^a, J. Olivier^b, S. Golhen^b and L. Ouahab^b

^aInstitute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland

^bUMR 6226 CNRS, Université de Rennes 1, 35042 Rennes, France

Coexistence of magnetism and electrical conductivity is one of the most important directions in the synthesis of multifunctional organic-based materials. Here we present infrared and Raman spectra of the series of TCE-TTF-based isostructural polymeric salts with paramagnetic (Co^{II} , Mn^{II}), and diamagnetic (Zn^{II} , Cd^{II}) metal ions [1]. Infrared and Raman active modes are identified and assigned based on theoretical calculations for neutral and ionized TCE-TTF using density functional theory (DFT) methods. The vibrational modes related to the C=C stretching vibrations of TCE-TTF are analyzed assuming the existence of the electron-molecular vibration coupling (EMV). The presence of the antisymmetric C=C dimeric mode provides an evidence that charge transfer takes place between TCE-TTF molecules belonging to neighboring polymeric networks.

1. J. Olivier et al., Inorg. Chem. 2009, 22, 3282-3290.

-13.4 cm -

Subject category :

2. Quantum and Classical Spin Systems

Presentation mode : poster

Corresponding author : I. Olejniczak

Address for correspondence : Institute of Molecular Physics Polish Academy of Sciences Smoluchowskiego 17, 60-179 Poznań, Poland

Email address : olejniczak@ifmpan.poznan.pl

 $9.7~\mathrm{cm}$