EXPERIMENTAL STUDY OF THE THERMAL TRANSPORT IN CsNiF₃ - S=1 QUANTUM CHAIN

V. Tkáč^{*a*}, A. Orendáčová^{*a*}, M. Orendáč^{*a*}, K. Tibenská^{*b*}, A. Feher^{*a*}, M. Poirier^{*c*} and M. W. Meisel^{*d*}

^aCentre of Low Temperature Physics, Faculty of Science, P. J. Šafárik University, Park Angelinum 9, 041 54 Košice, Slovakia

^bFaculty of Aeronautics, Technical University, Rampová 7, 041 21 Košice, Slovakia ^cRegroupement Québécois sur les Matériaux de Pointe, Département de Physique,

Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada

^dDepartment of Physics and the National High Magnetic Field Laboratory, University of Florida, Gainesville, Florida 32611-8440, USA

9.7 cm

An experimental study of the heat transport in CsNiF₃ single crystal has been performed in the temperature range from 2 to 13 K in a zero magnetic field, B = 0 T, as well as in sufficiently large magnetic fields, $B \sim 6$, 9 T, inducing ferromagnetic ground state along the hard axis c. CsNiF₃ represents an S = 1 quasi-one-dimensional XY ferromagnet with the intrachain exchange coupling $J/k_B \approx 24$ K and single ion anisotropy $D/k_B \approx 8$ K with ordering temperature $T_N = 2.7$ K. Comparison of the phonon and magnon velocities suggests that phonons are the main heat carriers in this magnetic insulator. The thermal conductivity in B = 0 T was analysed in the frame of a standard Debye model. The temperature dependence of the effective phonon mean free path was calculated from experimental data, and the enhancement of the phonon mean free path in $B \neq 0$ T was obtained. Several mechanisms responsible for this enhancement are discussed.

– 13.4 cm –

Subject category :

2. Quantum and Classical Spin Systems

Presentation mode : poster

Corresponding author : Vladimír Tkáč

Address for correspondence :

Centre of Low Temperature Physics P. J. Šafárik University in Košice Faculty of Science Park Angelinum 9 041 21 Košice Slovak Republic

Email address : vladimir.tkac@student.upjs.sk