Two-channel Kondo problem in $ZrAs_{1.58}Se_{0.39}$

L. Bochenek^a, T. Cichorek^a, A. Czulucki^b, M. Schmidt^b, G. Auffermann^b, Y. Prost^b, R. Niewa^c, F. Steglich^b and R. Kniep^b

^aInstitute of Low Temperature and Structure Research, Polish Academy of Sciences,

Wrocław, Poland

 $^b\mathrm{Max}$ Planck Institute for Chemical Physics of Solids, D
resden, Germany

 $^c \mathrm{Institute}$ for Inorganic Chemistry, University of Stuttgart, Germany

Low-temperature electrical resistivity $\rho(T)$ of the closely related phases $\text{ZrAs}_{1.58}\text{Se}_{0.39}$ (3% of vacancies within the monoatomic As layers) and $\text{ZrP}_{1.54}\text{S}_{0.46}$ (the 2*a* site fully occupied with P atoms) has been investigated along the *c* axis down to $T \gtrsim 0.08 \text{ K}$ and in $B \leq 14 \text{ T}$. Whereas for both systems a $-AT^{1/2}$ term in $\rho(T)$ was observed at $T \lesssim 15 \text{ K}$, an influence of the magnetic field on their electrical transport was found to be *qualitatively* different: for the As-based compound, a coefficient $A (= 0.167 \,\mu\Omega \text{cmK}^{-1/2})$ remains virtually unchanged even in the highest available magnetic fields. For the Pbased compound, however, an application of *B* significantly reduces the *A*-coefficient value from $0.038 \,\mu\Omega \text{cmK}^{-1/2}$ (B = 1 T) to $0.008 \,\mu\Omega \text{cmK}^{-1/2}$ (B = 14 T), *i.e.*, by factor nearly 5. These distinctly different observations indicate *qualitatively* different phenomena occurring in the material with (ZrAs_{1.58}Se_{0.39}) and without (ZrP_{1.54}S_{0.46}) broken pnictogen-pnictogen chemical bonds: a $\rho(T, B)$ behavior of the latter system is characteristic for the 3D electron-electron interaction in disordered systems, while the magnetic-field-independent $-AT^{1/2}$ term points at a two-channel Kondo problem derived from two-level states triggered by vacancies in the monoatomic As layers.

– 13.4 cm –

Subject category :

1. Strongly Correlated Electrons and High Temperature Superconductivity

Presentation mode : poster

Corresponding author : T. Cichorek

Address for correspondence :

Institute of Low Temperature and Structure Research Polish Academy of Sciences 50-422 Wrocław, Okólna 2, Poland

Email address : T.Cichorek@int.pan.wroc.pl

 $9.7~\mathrm{cm}$