THERMOELECTRIC POWER AND THERMAL CONDUCTIVITY OF HEAVY FERMION CeCu₄Al

M. Falkowski and A. Kowalczyk

Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland

$9.7~\mathrm{cm}$

The thermal conductivity and thermopower are discussed for the heavy fermion CeCu₄Al compound. CeCu₄Al is paramagnetic and follows the Curie-Weiss law with $\mu_{\text{eff}} = 2.53\mu_{\text{B}}/\text{f.u.}$ and $\theta_{\text{p}} = -10$ K indicating on the presence of well localized magnetic moments of Ce³⁺ ions. The determined electronic specific heat coefficient $\gamma = 2.2$ Jmol⁻¹K⁻² confirms the heavy fermion character of this compound. Thermopower is positive over the whole temperature range and below $T_{\text{max}} = 27$ K falls rapidly. Based on a simple band model the position and width of the 4f peak nearest to the Fermi level have been estimated. The measured total thermal conductivity of the CeCu₄Al compound increases almost linearly with increasing temperature.

This work was supported by the funds for science in years 2009-2011 as a research project No. N N202 229537

– 13.4 cm –

Subject category :

1. Strongly Correlated Electrons and High Temperature Superconductivity

Presentation mode : poster

Corresponding author : A. Kowalczyk

Address for correspondence :

Institute of Molecular Physics Polish Academy of Sciences Smoluchowskiego 17 60-179 Poznań Poland

Email address : ankow@ifmpan.poznan.pl