ANISOTROPY AND QUASI-2D BEHAVIOR OF MAGNETOELECTRIC LiCoPO₄ COMPOUND

J. Wieckowski^a, M. U.Gutowska^a, A. Szewczyk^a, A. Wisniewski^a, R. Puzniak^a, R. Diduszko^a, Yu. Kharchenko^b, M. F. Kharchenko^b, and H. Schmid^c

^aInstitute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland

^bB. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, pr. Lenina 47, 61103 Kharkiv, Ukraine

^cDepartment of Inorganic, Analytical and Applied Chemistry, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland

 $9.7 \mathrm{~cm}$

The LiCoPO₄ olivine exhibits a unique set of physical properties, e.g., strong linear magnetoelectric effect, large uniaxial magnetic anisotropy, quasi–2D magnetic structure, and a large Li-ionic conductivity, which makes it attractive for basic and applied studies. Specific heat, magnetic torque, and magnetization of LiCoPO₄ olivine were measured. It was shown that near the Néel temperature, $T_N = 21.6$ K, magnetic contribution to the specific heat can be described satisfactorily by logarithmic divergence, as expected for a quasi–2D antiferromagnetic Ising system. An effect of influence of magnetic field on the magnetocrystalline anisotropy was discovered. It manifests itself as a first-order transition induced by magnetic field of 8 T at ~ 9 K. Physical nature of this transition was explained and a model describing experimental dependences satisfactorily was proposed.

– 13.4 cm –

Subject category :

1. Strongly Correlated Electrons and High Temperature Superconductivity

Presentation mode : poster

Corresponding author : Jaroslaw Wieckowski

Address for correspondence : Institute of Physics Polish Academy of Sciences Al. Lotnikow 32/46 02-668 Warsaw, Poland

Email address : wieckow@ifpan.edu.pl