HIGH-FIELD MAGNETIC BEHAVIOR AND ELECTRONIC STRUCTURE OF MELT-SPUN YCo₂-BASED SYSTEMS

B. Mielniczuk^a, Z. Śniadecki^a, A. Szajek^a,

U.K. Rößler^b, E. Kampert^c, B. Idzikowski^a

^aInstitute of Molecular Physics, PAS, M. Smoluchowskiego 17, 60-179 Poznań, Poland

^bIFW Dresden, P.O. Box 270116, D-01171 Dresden, Germany

 $^c\mathrm{Dresden}$ High Magnetic Field Laboratory (HLD), Helmholtz-Zentrum Dresden

Rossendorf, D-01328 Dresden, Germany

The high-field magnetic properties of structurally metastable intermetallic compounds (nanocomposites), melt-spun YCo₂, Y_{0.9}Nb_{0.1}Co₂ and Y_{0.9}Ti_{0.1}Co₂ have been investigated. Physical properties are reported from x-ray diffraction (XRD), vibrating sample magnetometry (VSM) and pulsed magnetic field measurements. The electronic structure was determined based on full potential density-functional calculations. The samples consist of single, MgCu₂-type phase, with changing lattice constants and mean grain size from 25 to 50 nm. The magnetic properties of examined compounds are similar to polycrystalline YCo₂, but the increase of magnetization at lower temperatures and hysteresis loops on M(H) curve shows a ferromagnetic ordering with small coercive fields. The bending of M(H) curve in field of more than 30 T may indicate the onset of a metamagnetic transition to a field-induced high-spin state. By adding Ti or Nb, the magnetization in low magnetic field increases and superposition of two hysteresis loops can be seen at low temperatures. For $Y_{0,9}Ti_{0,1}Co_2$ the calculated value of magnetic moment on Co is 1.1 μ_B /atom, and -0.9 μ_B /atom is induced on Ti atoms, with total magnetic moment value of 1.85 $\mu_B/f.u.$ Structural and chemical modifications affect the properties of YCo₂ alloy significantly.