MAGNON ASSISTED LONG-RANGE SUPERCONDUCTING PROXIMITY EFFECT IN HALF-METALLIC FERROMAGNETS J. Martinek^a, G. Ilnicki^a, S. Takahashi^b, S. Hikino^c, M. Mori^c,

and S. Maekawa^c

^aInstitute of Molecular Physics, Polish Academy of Sciences, 60-179 Poznań, Poland ^bInstitute for Materials Research, Tohoku University, Sendai 980-8577, Japan ^cAdvanced Science Research Center, Japan Atomic Energy Agency, Tokai, Japan

Recent experiments demonstrate that even in the half-metallic fully-spin-polarized ferromagnets a long-range proximity effect is possible as in normal metals. We consider that at an interface the conversion between singlet pair and triplet one is assisted by a creation of magnon excitation. Such a triplet pair can penetrate the ferromagnet for a long distance while a singlet one cannot. Considering the thermal Bose distribution of magnons we obtain, due to destructive interference between magnons of different momentum, a short range proximity effect. We find that, in the case when a single magnon mode dominates other modes, the long-range proximity effect is possible as well. We suggest two possible scenarios in order to create a single mode behavior. First, via nonequilibrium magnons injected during the coherent precession of the magnetization by tuning the microwave frequency to the ferromagnetic resonance (FMR) frequency in a ferromagnetic Josephson junction. In the second scenario, we consider Bose-Einstein condensation (BEC) of magnons induces by the increase of the magnon chemical potential due to the superconducting proximity free energy. The BEC of magnons will induce a modulation of magnetic order (the inverse proximity effect) - spin superstructure presumably with a weak helical structure that allows for dissipationless spin current.

Subject category :

3. Magnetic Structure and Dynamics

Presentation mode : oral

Corresponding author : Jan Martinek

Address for correspondence :

Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań

Email address :

martinek@ifmpan.poznan.pl

 $9.7~\mathrm{cm}$