EPITAXIAL GROWTHS AND MAGNETIZATION DYNAMICS OF Ni₂MnSn HEUSLER ALLOY FILMS

J. Dubowik^{*a*}, I. Gościańska^{*b*}, K. Załęski^{*a*}, H. Głowiński^{*a*}, A. Ehresmann^{*c*}, G. Kakazei^{*d*} and S. A. Bunyaev^{*d*}

^aInstitute of Molecular Physics, Polish Academy of Sciences, Poznań, Poland

^bPhysics Department, A. Mickiewicz University, Poznań, Poland

 c Institute of Physics, Kassel University, Kassel, Germany

^d IFIMUP-IN, Universidade do Porto, Portugal

 $9.7~\mathrm{cm}$

Ferromagnetic resonance (FMR) has been investigated in Ni₂MnSn Heusler alloy films. The films were deposited at 673 < T < 723 K on MgO(001) substrates by means of magnetron sputtering. Structural characterization of the films was performed by x-ray diffraction (XRD). XRD confirmed that the films were epitaxial with the lattice parameter a = 0.605 and Ni₂MnSn(001)[100]||MgO(001)[110] relationship which matches well with $\sqrt{2}a_{\rm MgO} = 0.6$ nm. The films had the saturation magnetization $M_{\rm S}(4K) = 690$ G ($4\mu_{\rm B}$ per formula unit) typical of bulk Ni₂MnSn with L2₁ structural order. From angular dependencies of the resonance field and the FMR linewidth as well as FMR dispersion characteristics measured with VNA-FMR the following magnetic parameters at room temperature were obtained: the spectroscopic splitting factor g = 2.05, the cubic magnetocrystalline anisotropy K_4 of -1×10^4 erg/cm³ and the Gilbert damping constant α of $4 - 7 \times 10^{-3}$. A very low spin-wave stiffness D = 90 - 100 meVÅ is responsible for a substantial extrinsic two-magnon contribution to the linewidth of the order of 50-100 Oe in these epitaxial soft magnetic Heusler alloy films.

– 13.4 cm –

Subject category :

3. Magnetic Structure and Dynamics

Presentation mode : oral or poster

Corresponding author : J. Dubowik

Address for correspondence :

Institute of Molecular Physics, Polish Academy of Sciences, 60-179 ul. M. Smoluchowskiego 17, Poznań, Poland

Email address :

dubowik@ifmpan.poznan.pl