MAGNETIC PROPERTIES OF $Dy_{11}Si_4In_6$

R. Duraj^a, Yu. Tyvanchuk^b, J. Przewoźnik^c, Ya. Kalychak^b, S. Baran^d and A. Szytuła^d

^aInstitute of Physics, Technical University of Cracow, Kraków, Poland

^bInorganic Chemistry Department, Ivan Franko National University of Lviv, Lviv,

Ukraina

^cFaculty of Physics and Applied Computer Science AGH University and Technology, Kraków, Poland

^dM. Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland

 $9.7~\mathrm{cm}$

Intermetallic Dy₁₁Si₄In₆ crystallize in the tetragonal Sm₁₁Ge₄In₆-type crystal structure (space group I4/mmm) in which the rare earth atoms occupy four different sites. The ac and dc magnetic measurements suggest the complex magnetic properties. Below $T_c = 52$ K the ferromagnetic ordering is observed. With decrease temperature the change of the magnetic properties to the antiferro- ordering is observed. This result also from the magnetization curve measurement at 1.9 K With increase of the magnetic field the metamagnetic phase transition ($H_{cr} = 6.4$ kOe) with hysteresis is observed. Near the Curie temperature the magnetocaloric effect with the magnetic entropy $-\Delta S$ equal to 16.5 J/kg·K is observed. This value is large that observed in isostructural $R_{11}Ge_8In_2$ compounds [1].

[1] Y.Y. Janice Cheumg et al., Intermetallics: 10.1016/j.intermet. 2010.10.004.

— 13.4 cm –

Subject category :3. Magnetic Structure and Dynamics

Presentation mode : oral

Corresponding author : A. Szytuła

Address for correspondence : Instytut Fizyki UJ ul. Reymonta 4 30-059 Kraków Poland

Email address : andrzej.szytula@uj.edu.pl