Magnetic-field-induced anisotropy of hybridization gap in $CeOs_4As_{12}$ T. Cichorek^a, L. Bochenek^a, R. Wawryk^a, Z. Henkie^a, R.E. Baumbach^b, M.B. Maple^b

^aInstitute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw, Poland

^bDepartment of Physics, University of California, San Diego, USA

Previous measurements of electrical resistivity, magnetization, specific heat and thermoelectric power on high-quality single crystals of the filled skutterudite compound CeOs₄As₁₂ (bcc structure) revealed its semiconducting behavior that apparently originates from a hybridization between 4f and conduction electrons [1]. No substantial sample dependence accompanied by a lack of the low-lying phase transition allowed for detailed low-temperature ($T \gtrsim 0.07 \,\mathrm{K}$) and high-magnetic field ($B \leq 14 \,\mathrm{T}$) studies of a directional dependence of the electrical resistivity $\rho(T)$: At $T \leq 20 \,\mathrm{K}$ and for $i \parallel B$, we found remarkable dissimilarities along the [001] and [111] directions, indicative of an anisotropic suppression of energy gap(s). Additionally, differences observed between the transverse and longitudinal magnetoresistivity cannot be ascribed to the Lorentz force and thus, provide a further evidence for magnetic-field-induced anisotropy of hybridization gap in CeOs₄As₁₂. Finally, we note a well-defined T^2 dependence of the resistivity below around $T = 1.3 \,\mathrm{K}$ and in $B \geq 7 \,\mathrm{T}$ that also highlights strongly correlated electron phenomena in CeOs₄As₁₂.

[1] R.E. Baumbach et al, PNAS 105, 17307 (2008).

– 13.4 cm –

Subject category :

9.7 cm

1. Strongly Correlated Electrons and High Temperature Superconductivity

Presentation mode : oral

Corresponding author : T. Cichorek

Address for correspondence : Institute of Low Temperature and Structure Research Polish Academy of Sciences 50-422 Wroclaw, Okolna 2, Poland

Email address : T.Cichorek@int.pan.wroc.pl