BEHAVIOR OF COBALTITES UNDER PRESSURE: FACTORS CONTROLLING THE SIGN REVERSAL OF PRESSURE EFFECT

I. Fita ${ }^{a, b}$, A. Wisniewski ${ }^{a}$, R. Szymczak ${ }^{a}$, R. Puzniak a, I. O. Troyanchuk ${ }^{c}$,
D. V. Karpinsky ${ }^{c}$, V. Markovich ${ }^{d}$, and H. Szymczak ${ }^{a}$
${ }^{a}$ Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
${ }^{b}$ Donetsk Institute for Physics and Technology, NAS, Donetsk, Ukraine
${ }^{c}$ Scientific-Practical Materials Research Centre of NAS of Belarus, Minsk, Belarus
${ }^{d}$ Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Ferromagnetic perovskite cobaltites $\mathrm{La}_{1-x} M_{x} \mathrm{CoO}_{3}(M=\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba})$ have unusual magnetic and transport properties due to the unique feature of the Co ion to change its spin-state. Their large sensitivity to the external pressure is caused by the strong dependence of the crystal-field splitting energy $\Delta_{c f} \sim\left(d_{C o-O}\right)^{-5}$ on variation in the CoO bond length $\sim d_{C o-O}$. They demonstrate a complex dependence of pressure coefficient $\mathrm{d} T_{C} / \mathrm{d} P$ both on doping level and on size of dopant ion. An essentially positive $\mathrm{d} T_{C} / \mathrm{d} P$ coefficient found for Ba compound is in strong contrast to that one found for Ca and Sr cobaltites, where the $\mathrm{d} T_{C} / \mathrm{d} P$ changes sign from negative to positive with increasing doping. We demonstrate that the sign reversal of $\mathrm{d} T_{C} / \mathrm{d} P$ can be caused by the holedoping and also, independently, by the lattice expansion only, realized by increasing size of dopant ion at constant hole-doping level. It is shown also that the complex pressure effect on ferromagnetic transition T_{C} in cobaltites can be successfully described in terms of the competing e_{g}-electron bandwidth W and crystal-field splitting energy $\Delta_{c f}$, taking into account the pressure dependent steric factors.

$$
13.4 \mathrm{~cm}
$$

Subject category :

1. Strongly Correlated Electrons and High Temperature Superconductivity

Presentation mode :

oral - presented by A. Wisniewski

Corresponding author :

A. Wisniewski

Address for correspondence :

Institute of Physics, Polish Academy of Sciences
Al. Lotnikow 32/46
PL 02-668 Warsaw, Poland
Email address :
wisni@ifpan.edu.pl

