BEHAVIOR OF COBALTITES UNDER PRESSURE: FACTORS CONTROLLING THE SIGN REVERSAL OF PRESSURE EFFECT

I. Fita^{a,b}, A. Wisniewski^a, R. Szymczak^a, R. Puzniak^a, I. O. Troyanchuk^c,

D. V. Karpinsky^c, V. Markovich^d, and H. Szymczak^a

^aInstitute of Physics, Polish Academy of Sciences, Warsaw, Poland

^bDonetsk Institute for Physics and Technology, NAS, Donetsk, Ukraine

^cScientific-Practical Materials Research Centre of NAS of Belarus, Minsk, Belarus ^dDepartment of Physics, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Ferromagnetic perovskite cobaltites $\operatorname{La}_{1-x} M_x \operatorname{CoO}_3$ $(M = \operatorname{Ca}, \operatorname{Sr}, \operatorname{Ba})$ have unusual magnetic and transport properties due to the unique feature of the Co ion to change its spin-state. Their large sensitivity to the external pressure is caused by the strong dependence of the crystal-field splitting energy $\Delta_{cf} \sim (d_{Co-O})^{-5}$ on variation in the Co-O bond length $\sim d_{Co-O}$. They demonstrate a complex dependence of pressure coefficient dT_C/dP both on doping level and on size of dopant ion. An essentially positive dT_C/dP coefficient found for Ba compound is in strong contrast to that one found for Ca and Sr cobaltites, where the dT_C/dP changes sign from negative to positive with increasing doping. We demonstrate that the sign reversal of dT_C/dP can be caused by the holedoping and also, independently, by the lattice expansion only, realized by increasing size of dopant ion at constant hole-doping level. It is shown also that the complex pressure effect on ferromagnetic transition T_C in cobaltites can be successfully described in terms of the competing e_g -electron bandwidth W and crystal-field splitting energy Δ_{cf} , taking into account the pressure dependent steric factors.

– 13.4 cm –

Subject category :

1. Strongly Correlated Electrons and High Temperature Superconductivity

Presentation mode : oral - presented by A. Wisniewski

Corresponding author : A. Wisniewski

Address for correspondence : Institute of Physics, Polish Academy of Sciences Al. Lotnikow 32/46 PL 02-668 Warsaw, Poland

Email address : wisni@ifpan.edu.pl

 $9.7~\mathrm{cm}$