Substitution studies and the dual nature of 5f electrons in β -UB₂C V. H. Tran^a and P. Rogl^b

^aInstitute of Low Temperature and Structure Research, Polish Academy of Sciences,

P. O. Box 1410, 50-950 Wrocław, Poland

^bInstitute of Physical Chemistry, University of Vienna,

Währingerstr. 42, A-1090 Wien, Austria

We have recently studied fundamental properties of β -UB₂C [1,2] and it was found that this compound enters a ferromagnetic state below $T_{\rm C} = 74.5$ K. In addition to the ferromagnetic transition, a characteristic temperature $T^* \simeq 37$ K was found, at which both the electrical resistivity, specific heat and muon relaxation rate show anomalies. Interestingly, T_c and T^* decrease with increasing applied pressure and both are expected to reach 0 K at a critical pressure above 20 kbar [3,4]. In this contribution, we would like to investigate the effects of Th substitution for U on dual nature of 5f electrons in β -UB₂C. Therefore, we measured magnetization, specific heat and electrical resistivity on on several alloys within the solid solution $\text{Th}_x U_{1-x} B_2 C$. We will show that the long-range ferromagnetic order exists in the solid solution with $x \leq 0.34$. Above this concentration, $\text{Th}_x U_{1-x} B_2 C$ show an enhancement of the electronic specific heat coefficient and effective magnetic moment, compared to the parent β -UB₂C compound. **References**

1.V. H. Tran, P. Rogl, G. André, and F. Bourée, J. Phys.: Condens. Matter 18, 703 (2006).

2.V.H. Tran, P. Rogl, P. Dalmas de Réotier, and A. Yaouanc, Phys. Rev. B, 2011 (submitted)3.V. H. Tran, R. Khan, E. Bauer, and P. Rogl, Physica B 403, 1375 (2008).

4.V. A Sidorov, et al., Program Book of the IC on SCES (Santa Fe, New Mexico, 28.06-2.7.2010).

—— 13.4 cm —

Subject category :

1. Strongly Correlated Electrons and High Temperature Superconductivity

Presentation mode : oral

Corresponding author : V. H. Tran

Address for correspondence :

Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P. O. Box 1410, 50-950 Wrocław, Poland

Email address :

V.H.Tran@int.pan.wroc.pl

 $9.7~\mathrm{cm}$