KONDO SCREENING EFFECT AND FERROMAGNETIC ORDER IN UCu Ui_{2}

R. Troć ${ }^{a}$, M. Samsel-Czekała ${ }^{a}$ and B. Coqblin ${ }^{b}$

${ }^{a}$ Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2, Poland
${ }^{b}$ Laboratoire de Physique des Solides, CNRS-Université Paris-Sud, F-91405 Orsay, France

Previous bulk experiments showed that orthorhombic $\mathrm{UCu}_{2} \mathrm{Si}_{2}$ exhibits two magnetic phase transitions: it becomes a ferromagnet at $T_{C}=103 \mathrm{~K}$ with the moment of $1.6 \mu_{B} / \mathrm{U}$ at. [1] and above T_{C} it transforms to a long-period, amplitude-modulated antiferromagnet having a spin density wave-like order vanishing at $T_{N}=106 \mathrm{~K}[2]$. We present here the transport properties probed on a single-crystalline sample in magnetic fields 0 and up to 8 T . To find the Kondo-like parameters, we used $\mathrm{ThCu}_{2} \mathrm{Si}_{2}$ as a reference of the phonon contribution into the measured $\rho(T)$ dependence. The transverse magnetoresistivity $\Delta \rho(T) / \rho_{0}$ shows similar anomalies as those previously observed in UGe_{2} [3], pointing to a presence of strong magnetic fluctuations just around $T_{C} / 2$. Our ferromagnetic Fermi surface calculated for $\mathrm{UCu}_{2} \mathrm{Si}_{2}$, based on spin- and orbital-polarized results of [4], using a relativistic FPLO code [5], has some quasi-2D sheets with nesting. It supports a possibility of arising superconductivity mediated by the magnetic fluctuations, like it was supposed in UGe_{2} [6]. References: [1] R. Troć, Z. Bukowski, pssb 243, 290 ('06); [2] F. Honda et al., J. Phys.:CM 18, 479 ('06); [3] R. Troć, Acta Phys. Pol. B 34, 407 ('03); [4] J.A. Morkowski et al., JAC, in print; [5] K. Koepernik, H. Eschrig, PRB 59, 1743 ('99); [6] A.B. Shick, W.E. Picket, PRL 86, 300 ('01).

13.4 cm

Subject category :

1. Strongly Correlated Electrons and High Temperature Superconductivity

Presentation mode :

oral

Corresponding author :

R. Troć

Address for correspondence :

Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O.Box 1410, 50-950 Wrocław 2, Poland

Email address :
r.troc@int.pan.wroc.pl

