Hard and soft x-ray reflectivity studies of $(NiFe/Au/Co/Au)_{10}$ magnetic multilayers

B. Szymański^a, F. Stobiecki^a, T. Weis^b, D. Engel^b, M. Urbaniak^a, P. Kuświk^a, D. Lengemann^b, A. Ehresmann^b

^aInstitute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań, Poland

^bInstitute of Physics (EP IV) and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany

Sputter deposited (Ni₈₀Fe₂₀ 2nm/Au 2.2nm/Co $t_{\rm Co}$ /Au 2.2nm)₁₀ multilayers (MLs) with $t_{\rm Co}$ in the 0.4 ÷ 1.2 nm thickness range were investigated using hard x-ray diffraction and soft x-ray resonant magnetic scattering (SXRMS). SXRMS combines the element specificity of magnetic circular dichroism with conventional specular reflectivity. Specular reflectivity curves were measured with standard, unpolarized Cu K_{α} radiation (photon energy 8040 eV) and circularly polarized synchrotron radiation tuned to Co L₃ (778.4 eV) and Ni L₃ (853 eV) absorption edges. Structural properties (chemical periodicity and roughness) of the MLs were determined from reflectivity curve of the hard x-ray. Comparison of reflectivity dependence versus scattering vector q measured at different photon energies have shown: (i) different shapes of satellite Bragg peaks, (ii) small difference in their position, (iii) different ranges of q for appearance of Kiessig fringes. Analysis of soft x-ray reflectivity measured as a function of magnetic field allowed us to determine magnetization reversal of Co and NiFe layers separately.

– 13.4 cm –

Subject category :

5. Nano-structure, Surfaces, and Interfaces

Presentation mode : poster

Corresponding author : B. Szymański

Address for correspondence :

Institute of Molecular Physics Polish Academy of Sciences ul. Smoluchowskiego 17, 60-179 Poznań Poland

Email address : szyman@ifmpan.poznan.pl

 $9.7~\mathrm{cm}$