THE INFLUENCE OF He⁺ ION BOMBARDMENT ON MAGNETIC PROPERTIES OF NiFe/Au/Co/Au MULTILAYERS

P. Kuświk^a, B. Szymański^a, M. Urbaniak^a, F. Stobiecki^a, I. Sveklo^b,
J. Kisielewski^b, A. Maziewski^b and J. Jagielski^{c,d}

^aInstitute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland

^bInstitute of Experimental Physics, University of Białystok, Lipowa 41, 15-424 Białystok, Poland

^cInstitute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warszawa, Poland

^dThe Andrzej Soltan Institute for Nuclear Studies 05-400 Świerk/Otwock, Poland

The influence of helium ion bombardment on magnetoresistance (MR), magnetization reversal and domain structure of sputtered (Ni₂₀Fe₈₀-2nm/Au- 2nm/Co-0.6nm/Au-2nm)₁₀ multilayers (MLs) was investigated. The MLs consist of ferromagnetic layers with alternating in-plane (NiFe) and out-of-plane (Co) magnetic anisotropy. The samples were bombarded by He⁺ (30 keV) ions with fluences varied in the range $10^{13} \leq D \leq 3 \times 10^{16}$ He⁺/cm². With increasing fluences of helium ions the following changes in magnetic properties were observed: (i) the saturation field of Co layers exponentially decays what is caused by a transition from the out-of-plane to the in-plane anisotropy of Co layers, (ii) the MR decreases progressively whereas the resistance remains almost constant (up to 4×10^{15} He⁺/cm²), only for higher fluences it strongly increases, (iii) the period of maze stripe domain linearly decreases with log(D). However, domain structure for $D=3 \times 10^{16}$ He⁺/cm² is hardly visible.

-13.4 cm -

Subject category :

9.7 cm

5. Nano-structure, Surfaces, and Interfaces

Presentation mode : poster

Corresponding author : P. Kuświk

.

Address for correspondence : ul. Mariana Smoluchowskiego 17, 60-179 Poznań, Poland

Email address :

kuswik@ifmpan.poznan.pl