EXCHANGE COUPLING IN WEDGED Fe/Ti/Fe TRILAYERS

L. Smardz^a, H. Niedoba^b K. Smardz^c,

^aInstitute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17 St., 60-179 Poznań, Poland

^bGEMAC de l'Université de Versailles, 45, av. Des Etas - Unis, 78035 Versailles, France ^cInst. of Mat. Sci. and Engin., Poznań University of Technology, Poznań, Poland

Fe/Ti/Fe trilayers with wedge-shaped Ti interlayer were prepared using UHV magnetron sputtering. The planar growth and interface alloying of the Fe and Ti layers was confirmed in-situ by X-ray photoelectron spectroscopy. Furthermore, structural and magnetisation studies revealed spontaneous formation of an quasi-amorphous Fe-Ti alloy layer at the interfaces during the deposition process. The hysteresis measurements showed that the Fe layers are weakly ferromagnetically (FM) coupled for $\sim\!3.5~\text{nm}>d_{\text{Ti}}>\sim\!2~\text{nm}$. The above behaviour was also revealed by systematical domains observation during the magnetisation reversal process in a magnetic field equal to H_c . Above $d_{\text{Ti}}>3.5~\text{nm}$ a progressive transition to large independent domains takes place. The rapid decrease of the interlayer exchange coupling could be explained by its strong damping due to formation of a non-magnetic quasi-amorphous Ti-Fe alloy layer at the interfaces.