First principles studies of magnetic properties of wurtzite $Ga_{0.9375}TM_{0.0625}N$, (TM=V, Cr, Mn, Fe, Co, Ni)

J.Kaczkowski^a, A.Jezierski^a, P.Bogusławski^b, O.Volnianska^b and I.Gorczyca^c a Institute of Molecular Physics Polish Academy of Sciences, ul. M. Smoluchowskiego 17, 60-179 Poznan, Poland

^bInstitue of Physics Polish Academy of Sciences, Al.Lotników 32, 02-668 Warsaw, Poland

^cInstitute of High Pressure Physics "Unipress", Polish Academy of Sciences, ul. Sokołowska 29/37, 01-142 Warsaw, Poland

The aim of this work is study of the influence of V,Cr,Mn,Fe,Co and Ni on the electronic and magnetic properties of $Ga_{1-x}TM_xN$ in wurtzite structure. The electronic structure of zinc-blende phase were studied recently [1,2]. In this work we present the results obtained by ab initio method based on the density functional theory within generalized gradient approximation (GGA) and the pseudopotential method [3]. The calculations were performed for 32-atoms supercell model. The transition metal was substitute in the place of Ga. For Cr, Fe, Ni and Mn the electronic states at the Fermi level are 100% spin polarized, however for V and Co atoms the densities of states at the Fermi level are partially polarized.

References

- [1] E. Kulatov et al., Phys. Rev. B 66, 045203 (2002)
- [2] S.-C. Lee et al., J. Magn. Magn. Mater. 310, e732 (2007)
- [3] S. Baroni, A. Dal Corso, S. de Gironcoli, P. Giannozzi et al., www.pwscf.org

→ 13.4 cm

Subject category:

4. Spin Electronics and Magneto-Transport

Presentation mode:

poster

Corresponding author:

J. Kaczkowski

Address for correspondence:

Institute of Molecular Physics Polish Academy of Sciences ul. M. Smoluchowskiego 17 60-179 Poznan, Poland

Email address:

Jakub.Kaczkowski@ifmpan.poznan.pl

 $9.7~\mathrm{cm}$