EPR STUDY OF Cd₄Fe₈V₁₀O₄₁ VANADATE

N. Guskos^{1,2}, G. Zolnierkiewicz^{1,*}, J. Typek¹, and A. Blonska-Tabero³

¹Institute of Physics, Szczecin University of Technology, Al. Piastów 17, 70-310 Szczecin, Poland; ²Solid State Physics, Department of Physics, University of Athens, 15 784 Zografos, Athens, Greece; ³Dept. of Inorg. & Anal. Chem., Szczecin Univ. of Technol., Al. Piastów 42, 71-065 Szczecin, Poland;

A new multicomponent vanadate $Cd_4Fe_8V_{10}O_{41}$ has been synthesized [1] and investigated by electron paramagnetic resonance (EPR) technique. The compound $Cd_4Fe_8V_{10}O_{41}$ is isostructural with previously studied $Mg_3Fe_4(VO_4)_6$ [2]. According to the nominal stoichiometry of the $Cd_4Fe_8V_{10}O_{41}$ compound the ions (excepted iron ions) are nonmagnetic. The registered EPR spectra in the 4-300 K temperature range have dominated the presence of very wide almost symmetrical resonance line which is disappeared below 20 K. The resonance line is centered at $g_{eff}=2.017(1)$ with linewidth $\Delta B_{pp}=77.3$ mT at room temperature. Its amplitude decreases with decreased temperature where below 40 K the linewidth strongly depends from temperature. Below 60 K the resonance line shifts essential with decreasing temperature towards lower magnetic fields. It is suggested the strong magnetic interaction leads to magnetically ordering state. Replacing non-magnetic cations ions by divalent cadmium ions seems to intensify the magnetic ordering processes in the low temperatures region [2]. *This scientific work is financed from Polish budget resources allocated to science in the years 2005-2008 as a research project (1311/TO9/2005/29)*.

1. A Blonska-Tabero, J. Therm. Anal. Cal. - in press

2. N. Guskos et al., J. Appl. Phys. 101, 103922 (2007).