THE ELECTRONIC AND ELECTROCHEMICAL PROPERTIES OF THE LaNi₅-BASED ALLOYS

A. Szajek^a, A. Jezierski^a, M. Nowak^b, and M. Jurczyk^b

^aInstitute of Molecular Physics, Polish Academy of Sciences, Poznań Poland ^bInst. of Materials Sci. and Engineering, Poznań Univ. of Technology, Poznań Poland

 $LaNi_5$ -type alloys exhibit desirable electrochemical properties and are among the most promising electrode materials for nickel-metal hydride (Ni-MH_x) batteries. They crystallize in the hexagonal $CaCu_5$ structure and at room temperature can absorb up to 6 H/f.u.. Partial replacement of Ni by Al, Co, and Mn leads to an enhancement of the discharge capacity. Nanocrystalline $LaNi_5$ -type materials have been prepared by mechanical alloying followed by annealing. The electrochemical properties have been investigated for the following matrials $LaNi_5$, $LaNi_4Al$, $LaNi_3CoAl$ and $LaNi_{15/4}Mn_{3/4}Al_{1/4}Co_{1/4}$. Changes in electronic structure are analyzed based on full-potetial local-orbital minimum basis bandstructure code FPLO [1], effects of chemical disorder in occupancy of 2c and 3g sites are considered within coherent potential approximation [2]. Total energy calculations allow predicting of site preference by Al, Mn and Co atoms in the $CaCu_5$ -type unit cell. The impurities reduce the densities of electronic states at the Fermi level comparing to pure $LaNi_5$ compound.

 [1] FPLO-5.00-18 improved version of FPLO code by K. Kopernik and H. Eschrig, Phys. Rev. B 59 (1999) 1743; http://www.fplo.de

[2] K. Koepernik, B. Velicky, R. Hayn and H. Eschrig, Phys. Rev. B 55 (1997) 5717.
This work was supported by the Grant No. 3 T10A 033 29

Subject category :

3. Magnetic Structure and Dynamics

Presentation mode : poster

Corresponding author : A. Szajek

Address for correspondence : Institute of Molecular Physics Polish Academy of Sciences ul. Smoluchowskiego 17, 60-179 Poznań, Poland

Email address : szajek@ifmpan.poznan.pl

 $9.7~\mathrm{cm}$