PRESSURE INDUCED MAGNETIC PHASE TRANSITION IN $RMn_6Sn_{6-x}In_x$ SOLID SOLUTIONS (R = Y, Lu, Sc)

R. Duraj^a and A. Szytula^b

^aInstitute of Physics, Technical University of Cracow, Podchorazych 1, 30-059 Cracow, Poland

^bInstitute of Physics, Jagiellonian University, Reymonta 4, 30-059 Cracow, Poland

The three HfFe₆Ge₆-type compounds: ScMn₆Sn_{5.45}In_{0.55}, YMn₆Sn_{5.65}In_{0.35} and LuMn₆Sn_{5.1}In_{0.9} are characterized by similar magnetic properties. At ambient pressure, they order ferromagnetically about the room temperature ($293 \le T_C \le 356K$) and undergo a ferromagnetic to helimagnetic transition upon cooling ($235 \le T_t \le 327K$). This paper reports our study on the influence of hydrostatic pressure up to 1.5 GPa on magnetic properties of these solid solutions at low temperature. Increasing hydrostatic pressure under isothermal conditions yields a phase transition from helimagnetic to ferromagnetic order. The obtained (P, T) magnetic phase diagrams are discussed and compared with the corresponding properties of the isotypic compounds RMn₆Ge_{6-x}Ga_x (R = Y, Lu, Sc).

_____13.4 cm _____

Subject category:

3. Magnetic Structure and Dynamics

Presentation mode:

poster

Corresponding author:

R. Duraj

Address for correspondence:

Institute of Physics, Technical University of Cracow, Podchorazych 1, 30-059 Cracow, Poland

Email address:

puduraj@cyf-kr.edu.pl

 $9.7~\mathrm{cm}$