Quantum molecular-based chains: a density matrix renormalization approach¹

A. Barasiński^a, A. Drzewiński^a, G. Kamieniarz^b, P. Sobczak^b

^aInstitute of Physics, University of Zielona Góra, Prof. Z. Szafrana 4A, 65-516 Zielona Góra, Poland

^bFaculty of Physics, A. Mickiewicz University, ul. Umultowska 85, PL-61-614 Poznań, Poland

Molecule-based nanostructures manifesting magnetic hysteresis in the absence of long-ranged magnetic order are polynuclear clusters or one-dimensional structures based on an interplay between antyferromagnetic and ferromagnetic interactions along a chain. Recently it has been shown that such a behavior can be also found for canted antiferromagnetic chains, where only one type of spins and one type of iteractions are present. In order to study thermodynamic properties of such systems a quantum Heisenberg model is considered by means of the density-matrix renormalization technique.

Keywords: Molecular magnetism, Quantum Heisenberg model; Density-matrix renormalization-group method

¹Supported by NoE MAGMANet - EU project No NMP3-515767

— 13.4 cm -

Subject category:

2. Quantum and Classical Spin Systems

Presentation mode:

poster

Corresponding author:

P. Sobczak

Address for correspondence:

ul. Umultowska 85 61-614 Poznań

Email address:

psobczak@amu.edu.pl

 $9.7~\mathrm{cm}$