Specific heat of the polydomain Yb_4As_3 system: agreement between spin - 1/2 modelling and experiment

G. Kamieniarz^a and R. Matysiak^b and P. Gegenwart^c and H. Aoki^d and A. Ochiai^d

^aComputational Physics Division, Faculty of Physics, A. Mickiewicz University, 61-614 Poznań, Poland

^bInstitute of Engineering and Computer Education, University of Zielona Góra,65-516 Zielona Góra, Poland

^cMax-Planck-Institute for the Chemical Physics of Solids, 01187 Dresden, Germany ^dCenter for Low Temperature Science, Tohoku University, Sendai 980-8578, Japan

 $9.7~\mathrm{cm}$

New experimental values of specific heat of a polydomain Yb₄As₃ sample in a zero magnetic field are presented. They have been used for estimation of the lattice specific heat and taking into account the Bethe ansatz results, a new value of the exchange integral $J/k_B = -28$ K has been obtained for the Heisenberg model of the antiferromagnetic spin chain S = 1/2. A quantitative agreement has been achieved between the experimental specific heat data for a polydomain sample of Yb₄As₃ in magnetic field of different intensities and the numerical results obtained by the transfer-matrix simulation technique. Taking into regard the composition of the sample, 25% of the domains have been assumed to be aligned along the field and 75% perpendicular to it. The perpendicular component generates the staggered magnetic field following from the Dzyaloshinskii-Moriya interactions and the energy gap. The energy gap size has been reanalyzed as a function of the same-Gordon model.

- 13.4 cm -

Subject category :

2. Quantum and Classical Spin Systems

Presentation mode : poster

Corresponding author : G. Kamieniarz

Address for correspondence :

Computational Physics Division, Faculty of Physics, A. Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland

Email address : gjk@amu.edu.pl