Study of Ni-Pd substitution in $UNi_xPd_{2-x}Al_3$ system

Marián Mihalik a , Slavomír Maťaš a , Matúš Mihalik b

^aInstitute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47,

040 01 Košice, Slovakia

^bCharles University, Faculty of Mathematics and Physics, Department of Electronic Structures, Ke Karlovu 5, 121 16 Prague 2, Czech Republic

UNi₂Al₃ and UPd₂Al₃ have the same crystal structure belonging to the space group P6/mmm and are 'isoelectronic' in the sense that Ni and Pd lie in the same column of the periodic table. These heavy fermion systems behave differently on a microscopic level as regards their magnetism, while the superconducting properties are qualitatively similar. UPd₂Al₃ orders into a simple antiferromagnetic structure with a substantial magnetic moment ~ 0.8 μ_B/U below $T_N \sim 14.3$ K and then exhibits superconductivity below $T_c \sim 2$ K. UNi₂Al₃ enters an incommensurate spin-density-wave state with magnetic moment ~ 0.2 μ_B/U below $T_N \sim 4.5$ K and becomes superconducting below $T_c \sim 1$ K. Comparative studies of the electronic structures in the two compounds may help elucidate where these differences come from. It was anticipated that only because of small differences in the band structures between the Pd and the Ni compounds is the magnetic ground state incommensurably ordered in UNi₂Al₃, while it is commensurate in UPd₂Al₃. A tuning of the electronic structure by substitution Pd with Ni and subsequent study of magnetic and electronic properties of UNi_xPd_{2-x}Al₃ system is main goal of our study performed on polycrystalline samples with x = 0.5 and 1.5.

-13.4 cm -

Subject category :

1. Strongly Correlated Electrons and High Temperature Superconductivity

Presentation mode : poster

Corresponding author : Marián Mihalik

Address for correspondence :

Marián Mihalik Institute of Experimental Physics, Slovak Academy of Sciences Watsonova 47, 040 01 Košice, Slovakia

Email address : mihalik@saske.sk

 $9.7~\mathrm{cm}$