Heat capacity of heavy fermion compound CeCu₄Ga in high magnetic fields

A. Kowalczyk^a, T. Toliński^a, M. Reiffers^b, M. Zapotoková^b, M. Falkowski^a and E. Gažo^b

^aInstitute of Molecular Physics, PAS, Smoluchowskiego 17, 60-179 Poznań, Poland
^bInstitute of Experimental Physics, SAS, Watsonova 47, 043 53 Košice, Slovakia

The heat capacity in the applied magnetic field up to 9 T, susceptibility and magnetization of polycrystalline CeCu₄Ga are presented. Magnetic ordering was not observed down to 2 K. For temperature T < 200 K a Curie-Weiss behavior is observed giving an effective magnetic moment $\mu_{\text{eff}} = 2.53\mu_{\text{B}}/\text{f.u.}$ The experimental value of μ_{eff} is close to the calculated one for a free Ce³⁺ ion $\mu_{\text{eff}} = g(j(j+1))^{1/2} = 2.54\mu_{\text{B}}$, thus indicating the presence of well localized magnetic moments carried by the stable Ce³⁺ ions. At low temperatures the electronic heat capacity coefficient γ value depends strongly on the temperature range used for the extrapolation and applied magnetic field. We observe a typical heavy fermion behavior with γ value of about 380 mJmol⁻¹K⁻² obtained from extrapolation to T = 0 K of the temperature range above 4 K. However, extrapolation of the lowest temperatures range yields the γ value of 1.1 Jmol⁻¹K⁻². The observed behavior is in a qualitative agreement with Refs. [1,2]. The effects of magnetic field on low-temperature heat capacity of CeCu₄Ga are presented.

[1] E. Bauer et al., J. Magn. Magn. Mat. 69 (1987) 158

 $\left[2\right]$ E. Bauer et al., Solid State Commun
.63~(1987)271

– 13.4 cm –

Subject category :

1. Strongly Correlated Electrons and High Temperature Superconductivity

Presentation mode : poster

Corresponding author : A. Kowalczyk

Address for correspondence : Institute of Molecular Physics Polish Academy of Sciences Smoluchowskiego 17 60-179 Poznań Poland

Email address : ankow@ifmpan.poznan.pl

9.7 cm