STRUCTURE AND MAGNETIC CHARACTERIZATION OF BiFeO₃/YBa₂Cu₃O₇ BILAYERS

K. Werner-Malento^a, A. Tsarou^a, P. Dluzewski^a, W. Paszkowicz^a, R. Minikayev^a, M. Sawicki^a, Kees van der Beek^b, M. Konczykowski^b and P. Przyslupski^a

^aInstitute of Physics, Polish Academy of Sciences, Warsaw, Poland.

 b Laboratoire des Solides Irradies, Ecole Polytechnique, Palaiesau, France .

Complex perovskite oxides exhibit a rich spectrum of functional responses including superconductivity, magnetism, ferrolectricity etc. Combination of different oxides offers a new physical effects in structures composed of such systems. Multiferroic materials are both ferroelectric and magnetic. BFO is antiferomagnetic below Neel temperature T_N = 643 K and ferroelectric below T_C = 1143 K. Bilayers composed of multiferroic BiFeO₃ (BFO) layers and superconducting YBa₂Cu₃O₇ (YBCO) layers were fabricated using high pressure sputtering on (100) LSAT substrates. X-ray diffraction analysis confirms epitaxial growth of BFO layers on YBCO buffer layers. Magnetization measurements indicate both superconducting state and weak ferromagnetism. Such epitaxial coupling could create a new way of obtaining a magnetoelectric effect between magnetization of BFO layer with screening currents in superconducting YBCO layer.

– 13.4 cm –

Subject category :

1. Strongly Correlated Electrons and High Temperature Superconductivity

Presentation mode : poster

Corresponding author : K. Werner Malento

Address for correspondence : Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.

Email address : werner@ifpan.edu.pl

 $9.7~\mathrm{cm}$