STRUCTURAL, MAGNETIC AND TRANSPORT PROPERTIES OF NdBaCo $_2$ O $_{5+x}$ THIN FILMS DEPOSITED BY MAGNETRON SPUTTERING

E.Vlakhov^{a,b}, R. Szymczak^c, M. Baran^c, K. Piotrowski^c, A. Szewczyk^c, W. Paszkowicz^c, L. Lobanovski^d, S. Matyjasik^b, K. Nenkov^{b,e}, H. Szymczak ^aInstitute of Solid State Physics, Bulgarian Academy of Sciences, BG-1784 Sofia, Bulgaria

^bInternational Laboratory for High Magnetic Fields and Low Temperatures, PL-53529 Wroclaw, Poland

 c Institute of Physics, Polish Academy of Sciences, PL-02668 Warsaw, Poland d Scientific-Practical Materials Research Centre of NAS of Belarus, 220072 Minsk, Belarus

 $^e\mathrm{Leibniz}\text{-Institut}$ für Festkörper- und Werkstoffforschung Dresden, 01171 Dresden, Germany

For the first time, thin films of NdBaCo₂O_{5+x} have been deposited by RF magnetron sputtering on different substrates. The thin films deposited on single crystalline SLA(001) substrates exhibited highly textured structure with c-axis directed out-of-plane. Magnetic measurements M vs. T of three NdBaCo₂O_{5+x} / SLA(001) films, obtained at different substrate temperature and annealed in situ in oxygen, revealed successively PM-FM-AFM transitions with decrease in temperature. Their paramagnetic Curie – Weiss temperature were estimated to be in the range of $T_C = 100 \text{ K} \cdot 116 \text{ K}$. Resistivity of the cobaltite thin film was measured in wide temperature range exhibiting insulating behavior over the entire range studied. The best fit was found for the VRH mechanism.

_____13.4 cm -

Subject category:

1. Strongly Correlated Electrons and High Temperature Superconductivity

Presentation mode:

poster

Corresponding author:

Emil Vlakhov

Address for correspondence:

Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chausse, BG-1784 Sofia, Bulgaria

Email address:

evlakhov@issp.bas.bg

 $9.7~\mathrm{cm}$