Ion irradiation induced sub-100 nm ferromagnetic patterns

M. O. Liedke^a, T. Strache^a, J. Fassbender^a, W. Möller^a, E. Menéndez^b, J. Sort^{b,c}, T. Gemming^d, A. Weber^e, L. J. Heyderman^e, K. V. Rao^f,

S.C. Deevi^g and J. Nogués^{c,h}

 a FZ Dresden-Rosendorf, Germany – b Universitat Autònoma de Barcelona, Spain –

 c ICREA Barcelona, Spain – d IFW Dresden, Germany – e PSI Villigen, Switzerland –

 f KTH, Stockholm, Sweden – g Research Center Philip Morris, Richmond, USA –

^hInstitut Català de Nanotecnologia, Barcelona, Spain

 $9.7~\mathrm{cm}$

Focus ion beam (FIB) patterning of $Fe_{60}Al_{40}$ provides the potential to create arrays of microscopic ferromagnetic regions embedded in a paramagnetic matrix. As the consequence of low fluence irradiation such a method does not affect the surface roughness. Due to the ion damage distribution the phase transition from the chemically ordered B2-phase to the chemically disordered, ferromagnetic A2-phase is setup. The magnetic phase transformation is studied as a function of noble gases mass and is directly related to the number of displacements per atom (dpa) during ion irradiation. In case of heavy ions (Ar⁺, Kr⁺ or Xe⁺) the phase transformation originates purely from ballistic nature of the disordering process. For light ions (He⁺, Ne⁺) the disordering conditions deviates from the former case. The bulk vacancy diffusion from dilute collision cascades, that leads to a partial recovery of the thermodynamically favored B2-phase, plays a major role. Furthermore, by means of moderately high temperature annealing (about 900 K) the paramagnetic phase is completely recovered due to the annealing-induced atomic reordering. Therefore, local ion irradiation may lead to a novel type of patterned recording media free from tribological and exchange coupling effects.

- 13.4 cm **-**

Subject category :

5. Nano-structure, Surfaces, and Interfaces

Presentation mode : oral

Corresponding author : Maciej Oskar Liedke

Address for correspondence :

Forschungszentrum Dresden-Rossendorf e.V. Institut fuer Ionenstrahlphysik und Materialforschung Abteilung Nanofunktionsschichten (FWIN) Postfach 51 01 19, 01314 Dresden, Germany

Email address :

M.Liedke@fzd.de