$\begin{array}{c} \textbf{MAGNETIC PROPERTIES OF } CaMnO_{3-\delta} \text{ AND } La_{1-x}MnO_{3+\delta}\\ \textbf{NANOPARTICLES} \end{array}$

R. Puzniak^a, V. Markovich^b, I. Fita^c, A. Wisniewski^a

 $^a {\rm Institute}$ of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland

^bDepartment of Physics, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ^cDonetsk Institute for Physics and Technology, National Academy of Sciences, 83114 Donetsk, Ukraine

$9.7~\mathrm{cm}$

Magnetic properties of $\operatorname{CaMnO}_{3-\delta}$ nanoparticles with particles size of 50 nm and of $\operatorname{La}_{1-x}\operatorname{MnO}_{3+\delta}$ nanoparticles with size of 20, 25 and 30 nm will be presented and compared. Especially interesting effect was noticed for 50 nm $\operatorname{CaMnO}_{3-\delta}$ nanoparticles. They consist of antiferromagnetic (AFM) core and ferromagnetic (FM) shell. Observed asymmetric magnetization hysteresis loops were attributed to exchange-bias effect. This is the first observation of exchange bias effect in manganite nanoparticles with inverted AFM-core-FM-shell structure, as compared to the typical FM-core-AFM-shell structure. The effects of surface and exchange anisotropy will be discussed. For 20 nm $\operatorname{La}_{1-x}\operatorname{MnO}_{3+\delta}$ particles, the smallest nanoparticles studied, different metastable states with highly reduced FM phase and "negative ferromagnetism" developed after a series of quick coolings were observed. Peculiar magnetic memory effects will be presented.

13.4 cm -

Subject category :

5. Nano-structure, Surfaces, and Interfaces

Presentation mode : oral

Corresponding author : R. Puzniak

Address for correspondence :

Institute of Physics Polish Academy of Sciences Al. Lotnikow 32/46 02-668 Warsaw Poland

Email address : puzni@ifpan.edu.pl