Intriguing physical properties of the As-based filled skutterudites

T. Cichorek^{*a*}, R. Wawryk^{*a*}, Z. Henkie^{*a*}, R.E. Baumbach^{*b*} and M.B. Maple^{*b*}

^aInstitute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw, Poland

^bDepartment of Physics and Institute for Pure and Applied Physical Sciences, University of California at San Diego, USA

First-ever single crystals of As-based filled skutterudites have been grown by a highpressure Cd/As-flux method. Sufficiently large specimens enable a comprehensive research of their ground state. While low-temperature physical properties of LaRu₄As₁₂ (superconductivity), CeRu₄As₁₂ (non-Fermi-liquid behavior), PrFe₄As₁₂ (complex ferromagnetic state), and $PrOs_4As_{12}$ (multiple low-T ordered phases) will be briefly reviewed, a magnetic-field-driven metal-insulator transition in $CeOs_4As_{12}$ will be discussed in detail: Below about 130 K, the electrical resistivity increases by two orders of magnitude upon cooling to 65 mK. At the lowest temperatures (T < 3 K), both the electrical resistivity and Hall resistivity are significantly suppressed by a magnetic field $B \simeq 3$ T. Whereas these effects depend on the magnetic-field orientation, the further increase of B does not significantly affect the charge transport in $CeOs_4As_{12}$. Remarkable that its zero-field thermoelectric power displays a broad peak at around 2 K. Additionally, the Sommerfeld coefficient to the heat capacity as small as $7 \text{ mJK}^{-2}\text{mol}^{-1}$ is barely influenced by $B \leq 9$ T. Finally, a nonmagnetic or weakly magnetic ground state is inferred from the magnetization data. These experimental findings for $CeOs_4As_{12}$ apparently point at an energy-gap formation due to a hybridization between 4f electrons and conduction electrons.

– 13.4 cm ·

Subject category :

1. Strongly Correlated Electrons and High Temperature Superconductivity

Presentation mode : oral

Corresponding author : Tomasz Cichorek

Address for correspondence :

Institute of Low Temperature and Structure Research Polish Academy of Sciences ul. Okolna 2 50-950 Wroclaw Poland

Email address : T.Cichorek@int.pan.wroc.pl

 $9.7~\mathrm{cm}$