OCCURRENCE OF TWO QUANTUM CRITICAL POINTS IN Yb₂Pd₂Sn OR, Yb SYSTEMS DO NOT BEHAVE MIRROR-LIKE TO Ce COMPOUNDS

E. Bauer^a, R.T. Khan^a, H. Michor^a, T. Muramatsu^b, T. Kanemasa^b, T. Kagayama^b, K. Shimizu^b, Y. Aoki^c, H. Sato^c, M. Giovannini^d, P. Bonville^e ^aInstitute of Solid State Physics, Vienna University of Technology, A-1040 Wien, Austria; ^bKyokugen, Center for Quantum Science and Technology under Extreme Conditions,, Osaka University, Toyonaka, Osaka 560-8531; ^cDepartment of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan; ^dDipartimento di Chimica e Chimica Industriale, University of Genova, I-16146 Genova; ^eCEA, Centre de Saclay, DSM/IRAMIS/SPEC 91191 Gif-sur-Yvette, France

 $9.7 \mathrm{~cm}$

Ce and Yb compounds have been proven as ideal play ground to explore the principal features of competing electronic ground states and peculiarities associated with a quantum critical point (QCP). Here, we report on the first discovery of *two* consecutive, pressure driven QCP's. They emerge in a non-Fermi liquid environment at the origins of a dome-like, single magnetic phase in Yb₂Pd₂Sn at pressures $p_{c1} \approx 1$ GPa and $p_{c2} \approx 4$ GPa. This unique behavior of Yb compounds is supposed to result from mutually competing, pressure modified energy scales, which in case of Yb₂Pd₂Sn cause a sign change of the pressure dependence of the Kondo temperature T_K and magnetic ordering temperature T_N . Our finding turns out to be inimitable for Yb compounds, unlikely occurring in any Ce system. We present a variety of temperature, field and pressure dependencies of bulk properties, substantiating this conclusion.

–13.4 cm –

Subject category :

1. Strongly Correlated Electrons and High Temperature Superconductivity

Presentation mode : oral

Corresponding author : Ernst Bauer

Address for correspondence : Institute of Solid State Physics, Vienna University of Technology, A-1040 Wien, Austria

Email address :

bauer@ifp.tuwien.ac.at