ELECTRONIC SPECTRA AND MAGNETIC PROPERTIES OF RB_6 , RB_{12} AND RB_2C_2 BORIDES

A. Baranovskiy^a, G. Grechnev^a, A. Logosha^a, I.V. Svechkarev^a, O. Eriksson^b

^a B.Verkin Institute for Low Temperature Physics, Kharkov, 61103, Ukraine

Ukraine

^b Theoretical Magnetism Group, Uppsala University, S-75121, Sweden

The electronic structures of RB_6 , RB_{12} and RB_2C_2 borides (where R is a rare-earth, alkaline-earth, or early transition metal atom) are studied *ab initio* by using the fullpotential linear muffin-tin orbital method to shed light on the intriguing magnetic properties of these compounds. This includes the promising materials for spin electronics with reported high temperature ferromagnetism, namely, doped divalent hexaborides CaB₆, SrB₆, BaB₆, and the CaB₂C₂ compound, as well as Kondo semiconductors, SmB₆ and YbB_{12} . For CaB_6 and SrB_6 a semiconducting band structure has been obtained, in agreement with the recent experimental data, whereas a semimetallic ground state is expected for CaB_2C_2 and doped hexaborides. For CaB_2C_2 and the semimetallic $Ba_{1-x}La_xB_6$ alloys we have performed spin-polarized calculations in an external field to evaluate the induced spin and orbital magnetic moments. The calculations indicate a possibility of the field-induced weak ferromagnetic phase in CaB_2C_2 and the La doped hexaborides. The LSDA and GGA calculations for different spin configurations of YbB₁₂ point to a predominantly antiferromagnetic coupling between Yb^{+3} ions. For SmB_6 and YbB₁₂ our LSDA, GGA, and LSDA+U calculations have not revealed the hybridization gap for configurations with trivalent Sm^{+3} and Yb^{+3} .

-13.4 cm -

Subject category :

9.7 cm

7. Computations of Electronic Structures

Presentation mode : poster

Corresponding author : A. Baranovskiy

Address for correspondence :

B.Verkin Institute for Low Temperature Physics and Engineering, Kharkov, 61103, Ukraine

Email address :

baranovskiy@ilt.kharkov.ua